Modular Learning in Neural Networks
Author: Tomas Hrycej
Publisher: Wiley-Interscience
Published: 1992-10-09
Total Pages: 264
ISBN-13:
DOWNLOAD EBOOK"Modular Learning in Neural Networks covers the full range of conceivable approaches to the modularization of learning, including decomposition of learning into modules using supervised and unsupervised learning types; decomposition of the function to be mapped into linear and nonlinear parts; decomposition of the neural network to minimize harmful interferences between a large number of network parameters during learning; decomposition of the application task into subtasks that are learned separately; decomposition into a knowledge-based part and a learning part. The book attempts to show that modular learning based on these approaches is helpful in improving the learning performance of neural networks. It demonstrates this by applying modular methods to a pair of benchmark cases - a medical classification problem of realistic size, encompassing 7,200 cases of thyroid disorder; and a handwritten digits classification problem, involving several thousand cases. In so doing, the book shows that some of the proposed methods lead to substantial improvements in solution quality and learning speed, as well as enhanced robustness with regard to learning control parameters.".