Torsion in Homology of Random Simplicial Complexes

Torsion in Homology of Random Simplicial Complexes

Author: J. Andrew Newman

Publisher:

Published: 2018

Total Pages: 110

ISBN-13:

DOWNLOAD EBOOK

During the mid-twentieth century, Paul Erdos and Alfréd Rényi developed their now-standard random graph model. Beyond being practical in graph theory to nonconstructively prove the existence of graphs with certain interesting properties, the Erdős–Rényi model is also a model for generating random (one-dimensional) topological spaces. Within the last fifteen years, this model has been generalized to the higher-dimensional simplicial complex model of Nati Linial and Roy Meshulam. As in the case of the probabilistic method more generally, there are (at least) two reasons why one might apply random methods in topology: to understand what a "typical" topological space looks like and to give nonconstructive proofs of the existence of topological spaces with certain properties. Here we consider both of these applications of randomness in topology in considering the properties of torsion in homology of simplicial complexes. For the former, we discuss experimental results that strongly suggest torsion in homology of random Linial–Meshulam complexes is distributed according to Cohen–Lenstra heuristics. For the latter, we use the probabilistic method to give an upper bound on the number of vertices required to construct d-dimensional simplicial complexes with prescribed torsion in homology. This upper bound is optimal in the sense that it is a constant multiple of a known lower bound.


Algebraic Topology: Applications and New Directions

Algebraic Topology: Applications and New Directions

Author: Ulrike Tillmann

Publisher: American Mathematical Soc.

Published: 2014-07-14

Total Pages: 350

ISBN-13: 0821894749

DOWNLOAD EBOOK

This volume contains the proceedings of the Stanford Symposium on Algebraic Topology: Applications and New Directions, held from July 23-27, 2012, at Stanford University, Stanford, California. The symposium was held in honor of Gunnar Carlsson, Ralph Cohen and Ib Madsen, who celebrated their 60th and 70th birthdays that year. It showcased current research in Algebraic Topology reflecting the celebrants' broad interests and profound influence on the subject. The topics varied broadly from stable equivariant homotopy theory to persistent homology and application in data analysis, covering topological aspects of quantum physics such as string topology and geometric quantization, examining homology stability in algebraic and geometric contexts, including algebraic -theory and the theory of operads.


Higher Franz-Reidemeister Torsion

Higher Franz-Reidemeister Torsion

Author: Kiyoshi Igusa

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 394

ISBN-13: 0821831704

DOWNLOAD EBOOK

This work is devoted to the theory of topological higher Franz-Reidemeister torsion in $K$-theory. The author defines the higher Franz-Reidemeister torsion based on Volodin's $K$-theory and Borel's regulator map. He describes its properties and generalizations and studies the relation between the higher Franz-Reidemeister torsion and other torsions used in $K$-theory: Whitehead torsion and Ray-Singer torsion. He also presents methods of computing higher Franz-Reidemeister torsion, illustrates them with numerous examples, and describes various applications of higher Franz-Reidemeister torsion, particularly for the study of homology of mapping class groups. Packed with up-to-date information, the book should provide a useful research and reference tool for specialists working in algebraic topology and $K$-theory.


A Journey Through Discrete Mathematics

A Journey Through Discrete Mathematics

Author: Martin Loebl

Publisher: Springer

Published: 2017-10-11

Total Pages: 829

ISBN-13: 3319444794

DOWNLOAD EBOOK

This collection of high-quality articles in the field of combinatorics, geometry, algebraic topology and theoretical computer science is a tribute to Jiří Matoušek, who passed away prematurely in March 2015. It is a collaborative effort by his colleagues and friends, who have paid particular attention to clarity of exposition – something Jirka would have approved of. The original research articles, surveys and expository articles, written by leading experts in their respective fields, map Jiří Matoušek’s numerous areas of mathematical interest.


Advances in Disordered Systems, Random Processes and Some Applications

Advances in Disordered Systems, Random Processes and Some Applications

Author: Pierluigi Contucci

Publisher: Cambridge University Press

Published: 2017

Total Pages: 383

ISBN-13: 1107124107

DOWNLOAD EBOOK

This book offers a unified perspective on the study of complex systems with contributions written by leading scientists from various disciplines, including mathematics, physics, computer science, biology, economics and social science. It is written for researchers from a broad range of scientific fields with an interest in recent developments in complex systems.


Variations on a Theme of Borel

Variations on a Theme of Borel

Author: Shmuel Weinberger

Publisher: Cambridge University Press

Published: 2022-11-30

Total Pages: 365

ISBN-13: 1107142598

DOWNLOAD EBOOK

Explains, using examples, the central role of the fundamental group in the geometry, global analysis, and topology of manifolds.


An Invitation to Computational Homotopy

An Invitation to Computational Homotopy

Author: Graham Ellis

Publisher: Oxford University Press

Published: 2019-08-14

Total Pages: 640

ISBN-13: 0192569414

DOWNLOAD EBOOK

An Invitation to Computational Homotopy is an introduction to elementary algebraic topology for those with an interest in computers and computer programming. It expertly illustrates how the basics of the subject can be implemented on a computer through its focus on fully-worked examples designed to develop problem solving techniques. The transition from basic theory to practical computation raises a range of non-trivial algorithmic issues which will appeal to readers already familiar with basic theory and who are interested in developing computational aspects. The book covers a subset of standard introductory material on fundamental groups, covering spaces, homology, cohomology and classifying spaces as well as some less standard material on crossed modules. These topics are covered in a way that hints at potential applications of topology in areas of computer science and engineering outside the usual territory of pure mathematics, and also in a way that demonstrates how computers can be used to perform explicit calculations within the domain of pure algebraic topology itself. The initial chapters include in-depth examples from data mining, biology and digital image analysis, while the later chapters cover a range of computational examples on the cohomology of classifying spaces that are likely beyond the reach of a purely paper-and-pen approach to the subject. An Invitation to Computational Homotopy serves as a self-contained and informal introduction to these topics and their implementation in the sphere of computer science. Written in a dynamic and engaging style, it skilfully showcases a range of useful machine computations, and will serve as an invaluable aid to graduate students working with algebraic topology.


Lecture Notes in Algebraic Topology

Lecture Notes in Algebraic Topology

Author: James F. Davis

Publisher: American Mathematical Society

Published: 2023-05-22

Total Pages: 385

ISBN-13: 1470473682

DOWNLOAD EBOOK

The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.


Computational Topology for Data Analysis

Computational Topology for Data Analysis

Author: Tamal Krishna Dey

Publisher: Cambridge University Press

Published: 2022-03-10

Total Pages: 456

ISBN-13: 1009103199

DOWNLOAD EBOOK

Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.