Topology Optimization for Thermal-fluid Applications Using an Unstructured Finite Volume Scheme

Topology Optimization for Thermal-fluid Applications Using an Unstructured Finite Volume Scheme

Author: Ajay Vadakkepatt

Publisher:

Published: 2016

Total Pages: 542

ISBN-13:

DOWNLOAD EBOOK

Topology optimization is a method for developing optimized geometric designs that maximize a quantity of interest (QoI) subject to constraints. Unlike shape optimization, which optimizes the dimensions of a template shape, topology optimization does not start with a pre-conceived shape. Instead, the algorithm builds the geometry iteratively by placing material pixels in a specified background domain, aiming to maximize the QoI subject to a constraint on the volume of material or other constraints. The power of topology optimization lies in its ability to realize design solutions that are not initially apparent to the engineer. Topology optimization, though well established in structural applications, has not percolated to the thermal-fluids community to any great degree, and most published papers have not addressed sufficiently realistic engineering problems. However, the methodology has immense application potential in the area of fluid flow, heat and mass transfer and other transport phenomena at all length scales. In the literature, the solution methodology used for topology optimization is based mostly on finite element methods. However, unstructured finite volume methods are frequently the numerical method of choice in the industry for those addressing thermal-fluid or other transport problems. It is essential that methods for topology optimization work well in the finite volume framework if they are to find traction in industry. Regardless of the numerical method employed for forward solution, the most popular methodology employed for topology optimization is the solid isotropic material with penalization (SIMP) approach in conjunction with a gradient-based optimization algorithm. This optimization approach requires the calculation of sensitivity derivatives of the QoI with respect to design variables through a discrete adjoint method. The Method of Moving Asymptotes (MMA) is a widely-used algorithm for topology optimization. Thus the objective of this dissertation is to build a robust framework for topology optimization for thermal-fluid problems, employing SIMP and MMA, within the framework of industry-standard finite volume schemes.Towards realizing this goal, we first develop and demonstrate topology optimization for multidimensional steady heat conduction problems in a cell-centered unstructured finite volume framework. The fundamental methodologies for SIMP/RAMP interpolation of thermal conductivity and the basic optimization infrastructure using MMA are developed and tested in this chapter. The effect of including secondary gradients in sensitivity computations is evaluated for typical heat conduction problems. Topologies that maximize or minimize relevant quantities of interest in heat conduction applications with and without volumetric heat generation are presented. Industry standard finite volume codes for fluid flow are built on unstructured cell-centered formulations employing co-located pressure-velocity storage, and a sequential solution algorithm. This type of algorithm is very widely used, but poses a number of difficulties when used as the solution kernel for performing efficient gradient-based topology optimization. The complete Jacobian required for discrete adjoint sensitivity computation is never available in a sequential technique. Also, the complexities of co-located algorithms must be correctly reflected in the Jacobian and sensitivity computations if correct optimal structures are to evolve. We build an Automatic Differentiation library, christened 'Rapid', to compute accurate Jacobians and other necessary derivatives for the discrete adjoint method in the context of an unstructured co-located sequential pressure based algorithm. The library is designed to provide a problem-agnostic pathway to automatically computing all required derivatives to machine accuracy. With sensitivities obtained from the Rapid library, we next develop and demonstrate topology optimization for multidimensional laminar flow applications. We present a variety of test cases involving internal channel flows as well as external flows, for a range of Reynolds numbers. An essential feature of Rapid is that it is not necessary to write new code to find sensitivities when new physics, such as turbulence models, are added, or when new cost functions are considered. The next step is therefore to extend the topology optimization for flow problems to the turbulent regime. Based on the Spalart-Allmaras RANS turbulence model, the topology optimization methodology for steady state turbulent flow problems is developed and demonstrated for channel flow problems. Finally we develop topology optimization methodology for forced convection applications which requires the coupling of the Navier-Stokes and energy equations and which are typically solved sequentially in finite volume schemes. The coupled nature of the problem introduces the concept of multi-objective opposing cost functions from the two physical models, for example, minimizing pressure drop and simultaneously maximizing heat transfer. Techniques to obtain sensitivities for forced convection with laminar and turbulent flow with Rapid are presented. Challenges for topology optimization resulting from multi-objective cost functions are discussed. We believe this is the first time that a complete topology optimization framework using an unstructured finite volume method and the discrete adjoint method, fully generalizable to practical use in commercial solvers and for industrial applications, has been demonstrated in the open literature. The methodologies developed here provide a basis for performing topology optimization involving other transport phenomena, more complex cost functions and more realistic constraints.


The Finite Volume Method in Computational Fluid Dynamics

The Finite Volume Method in Computational Fluid Dynamics

Author: F. Moukalled

Publisher: Springer

Published: 2015-08-13

Total Pages: 799

ISBN-13: 3319168746

DOWNLOAD EBOOK

This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.


Topology Optimization

Topology Optimization

Author: Martin Philip Bendsoe

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 381

ISBN-13: 3662050862

DOWNLOAD EBOOK

The topology optimization method solves the basic enginee- ring problem of distributing a limited amount of material in a design space. The first edition of this book has become the standard text on optimal design which is concerned with the optimization of structural topology, shape and material. This edition, has been substantially revised and updated to reflect progress made in modelling and computational procedures. It also encompasses a comprehensive and unified description of the state-of-the-art of the so-called material distribution method, based on the use of mathematical programming and finite elements. Applications treated include not only structures but also materials and MEMS.


Topology Optimization in Structural and Continuum Mechanics

Topology Optimization in Structural and Continuum Mechanics

Author: George I. N. Rozvany

Publisher: Springer Science & Business Media

Published: 2013-09-20

Total Pages: 471

ISBN-13: 3709116430

DOWNLOAD EBOOK

The book covers new developments in structural topology optimization. Basic features and limitations of Michell’s truss theory, its extension to a broader class of support conditions, generalizations of truss topology optimization, and Michell continua are reviewed. For elastic bodies, the layout problems in linear elasticity are discussed and the method of relaxation by homogenization is outlined. The classical problem of free material design is shown to be reducible to a locking material problem, even in the multiload case. For structures subjected to dynamic loads, it is explained how they can be designed so that the structural eigenfrequencies of vibration are as far away as possible from a prescribed external excitation frequency (or a band of excitation frequencies) in order to avoid resonance phenomena with high vibration and noise levels. For diffusive and convective transport processes and multiphysics problems, applications of the density method are discussed. In order to take uncertainty in material parameters, geometry, and operating conditions into account, techniques of reliability-based design optimization are introduced and reviewed for their applicability to topology optimization.


Twenty-Fourth Symposium on Naval Hydrodynamics

Twenty-Fourth Symposium on Naval Hydrodynamics

Author: National Research Council

Publisher: National Academies Press

Published: 2003-11-15

Total Pages: 1018

ISBN-13: 0309254701

DOWNLOAD EBOOK

This report is part of a series of reports that summarize this regular event. The report discusses research developments in ship design, construction, and operation in a forum that encouraged both formal and informal discussion of presented papers.


Evolutionary and Deterministic Methods for Design Optimization and Control With Applications to Industrial and Societal Problems

Evolutionary and Deterministic Methods for Design Optimization and Control With Applications to Industrial and Societal Problems

Author: Esther Andrés-Pérez

Publisher: Springer

Published: 2018-09-06

Total Pages: 538

ISBN-13: 3319898906

DOWNLOAD EBOOK

This book contains thirty-five selected papers presented at the International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (EUROGEN 2017). This was one of the Thematic Conferences of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Topics treated in the various chapters reflect the state of the art in theoretical and numerical methods and tools for optimization, and engineering design and societal applications. The volume focuses particularly on intelligent systems for multidisciplinary design optimization (mdo) problems based on multi-hybridized software, adjoint-based and one-shot methods, uncertainty quantification and optimization, multidisciplinary design optimization, applications of game theory to industrial optimization problems, applications in structural and civil engineering optimum design and surrogate models based optimization methods in aerodynamic design.


IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials

IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials

Author: Martin Philip Bendsoe

Publisher: Springer Science & Business Media

Published: 2006-10-03

Total Pages: 602

ISBN-13: 1402047525

DOWNLOAD EBOOK

This volume offers edited papers presented at the IUTAM-Symposium Topological design optimization of structures, machines and materials - status and perspectives, October 2005. The papers cover the application of topological design optimization to fluid-solid interaction problems, acoustics problems, and to problems in biomechanics, as well as to other multiphysics problems. Also in focus are new basic modelling paradigms, covering new geometry modelling such as level-set methods and topological derivatives.


Topology Optimization of Compliant Mechanisms

Topology Optimization of Compliant Mechanisms

Author: Xianmin Zhang

Publisher: Springer

Published: 2018-05-02

Total Pages: 202

ISBN-13: 9811304327

DOWNLOAD EBOOK

This book covers various topics regarding the design of compliant mechanisms using topology optimization that have attracted a great deal of attention in recent decades. After comprehensively describing state-of-the-art methods for designing compliant mechanisms, it provides a new topology optimization method for finding new flexure hinges. It then presents several attempts to obtain distributed compliant mechanisms using the topology optimization method. Further, it discusses a Jacobian-based topology optimization method for compliant parallel mechanisms, and introduces readers to the topology optimization of compliant mechanisms, taking into account geometrical nonlinearity and reliability. Providing a systematic method for topology optimization of flexure hinges, which are essential for designing compliant mechanisms, the book offers a valuable resource for all readers who are interested in designing compliant mechanism-based positioning stages. In addition, the methods for solving the de facto hinges in topology optimized compliant mechanisms will benefit all engineers seeking to design micro-electro-mechanical system (MEMS) structures.