Classical Topology and Combinatorial Group Theory

Classical Topology and Combinatorial Group Theory

Author: John Stillwell

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 344

ISBN-13: 1461243726

DOWNLOAD EBOOK

In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec tions to other parts of mathematics which make topology an important as well as a beautiful subject.


Introduction to Topology

Introduction to Topology

Author: Theodore W. Gamelin

Publisher: Courier Corporation

Published: 2013-04-22

Total Pages: 258

ISBN-13: 0486320189

DOWNLOAD EBOOK

This text explains nontrivial applications of metric space topology to analysis. Covers metric space, point-set topology, and algebraic topology. Includes exercises, selected answers, and 51 illustrations. 1983 edition.


History of Topology

History of Topology

Author: I.M. James

Publisher: Elsevier

Published: 1999-08-24

Total Pages: 1067

ISBN-13: 0080534074

DOWNLOAD EBOOK

Topology, for many years, has been one of the most exciting and influential fields of research in modern mathematics. Although its origins may be traced back several hundred years, it was Poincaré who "gave topology wings" in a classic series of articles published around the turn of the century. While the earlier history, sometimes called the prehistory, is also considered, this volume is mainly concerned with the more recent history of topology, from Poincaré onwards.As will be seen from the list of contents the articles cover a wide range of topics. Some are more technical than others, but the reader without a great deal of technical knowledge should still find most of the articles accessible. Some are written by professional historians of mathematics, others by historically-minded mathematicians, who tend to have a different viewpoint.


Experiments in Topology

Experiments in Topology

Author: Stephen Barr

Publisher: Courier Corporation

Published: 2012-12-04

Total Pages: 244

ISBN-13: 048615274X

DOWNLOAD EBOOK

Classic, lively explanation of one of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map coloring, problem of the Koenigsberg bridges, much more, described with clarity and wit.


General Topology

General Topology

Author: John L. Kelley

Publisher: Courier Dover Publications

Published: 2017-03-07

Total Pages: 321

ISBN-13: 0486820661

DOWNLOAD EBOOK

Comprehensive text for beginning graduate-level students and professionals. "The clarity of the author's thought and the carefulness of his exposition make reading this book a pleasure." — Bulletin of the American Mathematical Society. 1955 edition.


A History of Algebraic and Differential Topology, 1900 - 1960

A History of Algebraic and Differential Topology, 1900 - 1960

Author: Jean Dieudonné

Publisher: Springer Science & Business Media

Published: 2009-09-01

Total Pages: 666

ISBN-13: 0817649077

DOWNLOAD EBOOK

This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet


Analysis On Manifolds

Analysis On Manifolds

Author: James R. Munkres

Publisher: CRC Press

Published: 2018-02-19

Total Pages: 381

ISBN-13: 042996269X

DOWNLOAD EBOOK

A readable introduction to the subject of calculus on arbitrary surfaces or manifolds. Accessible to readers with knowledge of basic calculus and linear algebra. Sections include series of problems to reinforce concepts.


Topology

Topology

Author: James R. Munkres

Publisher: Pearson Higher Ed

Published: 2013-08-28

Total Pages: 508

ISBN-13: 1292036788

DOWNLOAD EBOOK

For a senior undergraduate or first year graduate-level course in Introduction to Topology. Appropriate for a one-semester course on both general and algebraic topology or separate courses treating each topic separately. This text is designed to provide instructors with a convenient single text resource for bridging between general and algebraic topology courses. Two separate, distinct sections (one on general, point set topology, the other on algebraic topology) are each suitable for a one-semester course and are based around the same set of basic, core topics. Optional, independent topics and applications can be studied and developed in depth depending on course needs and preferences.