A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology

Author: J. P. May

Publisher: University of Chicago Press

Published: 1999-09

Total Pages: 262

ISBN-13: 9780226511832

DOWNLOAD EBOOK

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.


Handbook of Geometry and Topology of Singularities II

Handbook of Geometry and Topology of Singularities II

Author: José Luis Cisneros-Molina

Publisher: Springer Nature

Published: 2021-11-01

Total Pages: 581

ISBN-13: 3030780244

DOWNLOAD EBOOK

This is the second volume of the Handbook of the Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory and related topics. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.


Singularities, Part 2

Singularities, Part 2

Author: Peter Orlik

Publisher: American Mathematical Soc.

Published: 1983

Total Pages: 698

ISBN-13: 0821814664

DOWNLOAD EBOOK

On April 7-10, 1980, the American Mathematical Society sponsored a Symposium on the Mathematical Heritage of Henri Poincari, held at Indiana University, Bloomington, Indiana. This work presents the written versions of all but three of the invited talks presented at this Symposium. It contains 2 papers by invited speakers who aren't able to attend.


Real and Complex Singularities

Real and Complex Singularities

Author: Laurentiu Paunescu

Publisher: World Scientific

Published: 2007

Total Pages: 475

ISBN-13: 9812705511

DOWNLOAD EBOOK

The modern theory of singularities provides a unifying theme that runs through fields of mathematics as diverse as homological algebra and Hamiltonian systems. It is also an important point of reference in the development of a large part of contemporary algebra, geometry and analysis. Presented by internationally recognized experts, the collection of articles in this volume yields a significant cross-section of these developments. The wide range of surveys includes an authoritative treatment of the deformation theory of isolated complex singularities by prize-winning researcher K Miyajima. Graduate students and even ambitious undergraduates in mathematics will find many research ideas in this volume and non-experts in mathematics can have an overview of some classic and fundamental results in singularity theory. The explanations are detailed enough to capture the interest of the curious reader, and complete enough to provide the necessary background material needed to go further into the subject and explore the research literature.


Real Algebraic Geometry

Real Algebraic Geometry

Author: Michel Coste

Publisher: Springer

Published: 2006-11-15

Total Pages: 425

ISBN-13: 3540473378

DOWNLOAD EBOOK

Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contributions by: S. Akbulut and H. King; C. Andradas and J. Ruiz; A. Borobia; L. Br|cker; G.W. Brumfield; A. Castilla; Z. Charzynski and P. Skibinski; M. Coste and M. Reguiat; A. Degtyarev; Z. Denkowska; J.-P. Francoise and F. Ronga; J.M. Gamboa and C. Ueno; D. Gondard- Cozette; I.V. Itenberg; P. Jaworski; A. Korchagin; T. Krasinksi and S. Spodzieja; K. Kurdyka; H. Lombardi; M. Marshall and L. Walter; V.F. Mazurovskii; G. Mikhalkin; T. Mostowski and E. Rannou; E.I. Shustin; N. Vorobjov.


Real Algebraic Geometry

Real Algebraic Geometry

Author: Jacek Bochnak

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 429

ISBN-13: 3662037181

DOWNLOAD EBOOK

The present volume is a translation, revision and updating of our book (pub lished in French) with the title "Geometrie Algebrique Reelle". Since its pub lication in 1987 the theory has made advances in several directions. There have also been new insights into material already in the French edition. Many of these advances and insights have been incorporated in this English version of the book, so that it may be viewed as being substantially different from the original. We wish to thank Michael Buchner for his careful reading of the text and for his linguistic corrections and stylistic improvements. The initial Jb. TEiX file was prepared by Thierry van Effelterre. The three authors participate in the European research network "Real Algebraic and Analytic Geometry". The first author was partially supported by NATO Collaborative Research Grant 960011. Jacek Bochnak April 1998 Michel Coste Marie-Pranroise Roy Table of Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Ordered Fields, Real Closed Fields . . . . . . . . . . . . . . . . . . . . . . . 7 1. 1 Ordered Fields, Real Fields . . . . . " . . . . . . . . . . . . . . . . . . . . . . . 7 1. 2 Real Closed Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1. 3 Real Closure of an Ordered Field. . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 4 The Tarski-Seidenberg Principle. . . . . . . . . . . . . . . . . . . . . . . . . . 17 2. Semi-algebraic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2. 1 Algebraic and Semi-algebraic Sets. . . . . . . . . . . . . . . . . . . . . . . . 23 2. 2 Projection of Semi-algebraic Sets. Semi-algebraic Mappings. . 26 2. 3 Decomposition of Semi-algebraic Sets. . . . . . . . . . . . . . . . . . . . . 30 2. 4 Connectedness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2. 5 Closed and Bounded Semi-algebraic Sets. Curve-selection Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2. 6 Continuous Semi-algebraic Functions. Lojasiewicz's Inequality 42 2. 7 Separation of Closed Semi-algebraic Sets. . . . . . . . . . . . . . . . . .


Effective Methods in Algebraic Geometry

Effective Methods in Algebraic Geometry

Author: T. Mora

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 504

ISBN-13: 1461204410

DOWNLOAD EBOOK

The symposium "MEGA-90 - Effective Methods in Algebraic Geome try" was held in Castiglioncello (Livorno, Italy) in April 17-211990. The themes - we quote from the "Call for papers" - were the fol lowing: - Effective methods and complexity issues in commutative algebra, pro jective geometry, real geometry, algebraic number theory - Algebraic geometric methods in algebraic computing Contributions in related fields (computational aspects of group theory, differential algebra and geometry, algebraic and differential topology, etc.) were also welcome. The origin and the motivation of such a meeting, that is supposed to be the first of a series, deserves to be explained. The subject - the theory and the practice of computation in alge braic geometry and related domains from the mathematical viewpoin- has been one of the themes of the symposia organized by SIGSAM (the Special Interest Group for Symbolic and Algebraic Manipulation of the Association for Computing Machinery), SAME (Symbolic and Algebraic Manipulation in Europe), and AAECC (the semantics of the name is vary ing; an average meaning is "Applied Algebra and Error Correcting Codes").


Introduction to Lipschitz Geometry of Singularities

Introduction to Lipschitz Geometry of Singularities

Author: Walter Neumann

Publisher: Springer Nature

Published: 2021-01-11

Total Pages: 356

ISBN-13: 3030618072

DOWNLOAD EBOOK

This book presents a broad overview of the important recent progress which led to the emergence of new ideas in Lipschitz geometry and singularities, and started to build bridges to several major areas of singularity theory. Providing all the necessary background in a series of introductory lectures, it also contains Pham and Teissier's previously unpublished pioneering work on the Lipschitz classification of germs of plane complex algebraic curves. While a real or complex algebraic variety is topologically locally conical, it is in general not metrically conical; there are parts of its link with non-trivial topology which shrink faster than linearly when approaching the special point. The essence of the Lipschitz geometry of singularities is captured by the problem of building classifications of the germs up to local bi-Lipschitz homeomorphism. The Lipschitz geometry of a singular space germ is then its equivalence class in this category. The book is aimed at graduate students and researchers from other fields of geometry who are interested in studying the multiple open questions offered by this new subject.