More Than Life Itself

More Than Life Itself

Author: A. H. Louie

Publisher: Walter de Gruyter

Published: 2013-05-02

Total Pages: 412

ISBN-13: 3110321947

DOWNLOAD EBOOK

A. H. Louie's More Than Life Itself is an exploratory journey in relational biology, a study of life in terms of the organization of entailment relations in living systems. This book represents a synergy of the mathematical theories of categories, lattices, and modelling, and the result is a synthetic biology that provides a characterization of life. Biology extends physics. Life is not a specialization of mechanism, but an expansive generalization of it. Organisms and machines share some common features, but organisms are not machines. Life is defined by a relational closure that places it beyond the reach of physicochemical and mechanistic dogma, outside the reductionistic universe, and into the realm of impredicativity. Function dictates structure. Complexity brings forth living beings.


Encyclopaedia of Mathematics

Encyclopaedia of Mathematics

Author: Michiel Hazewinkel

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 743

ISBN-13: 9400903650

DOWNLOAD EBOOK

This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.


Author:

Publisher: IOS Press

Published:

Total Pages: 6097

ISBN-13:

DOWNLOAD EBOOK


Introduction to the Modern Theory of Dynamical Systems

Introduction to the Modern Theory of Dynamical Systems

Author: Anatole Katok

Publisher: Cambridge University Press

Published: 1995

Total Pages: 828

ISBN-13: 9780521575577

DOWNLOAD EBOOK

This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.


Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics

Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics

Author: Marco Pettini

Publisher: Springer Science & Business Media

Published: 2007-06-14

Total Pages: 460

ISBN-13: 0387499571

DOWNLOAD EBOOK

This book covers a new explanation of the origin of Hamiltonian chaos and its quantitative characterization. The author focuses on two main areas: Riemannian formulation of Hamiltonian dynamics, providing an original viewpoint about the relationship between geodesic instability and curvature properties of the mechanical manifolds; and a topological theory of thermodynamic phase transitions, relating topology changes of microscopic configuration space with the generation of singularities of thermodynamic observables. The book contains numerous illustrations throughout and it will interest both mathematicians and physicists.


Dimension Theory in Dynamical Systems

Dimension Theory in Dynamical Systems

Author: Yakov B. Pesin

Publisher: University of Chicago Press

Published: 2008-04-15

Total Pages: 633

ISBN-13: 0226662233

DOWNLOAD EBOOK

The principles of symmetry and self-similarity structure nature's most beautiful creations. For example, they are expressed in fractals, famous for their beautiful but complicated geometric structure, which is the subject of study in dimension theory. And in dynamics the presence of invariant fractals often results in unstable "turbulent-like" motions and is associated with "chaotic" behavior. In this book, Yakov Pesin introduces a new area of research that has recently appeared in the interface between dimension theory and the theory of dynamical systems. Focusing on invariant fractals and their influence on stochastic properties of systems, Pesin provides a comprehensive and systematic treatment of modern dimension theory in dynamical systems, summarizes the current state of research, and describes the most important accomplishments of this field. Pesin's synthesis of these subjects of broad current research interest will be appreciated both by advanced mathematicians and by a wide range of scientists who depend upon mathematical modeling of dynamical processes.


Topological Methods in Hydrodynamics

Topological Methods in Hydrodynamics

Author: Vladimir I. Arnold

Publisher: Springer Science & Business Media

Published: 2008-01-08

Total Pages: 376

ISBN-13: 0387225897

DOWNLOAD EBOOK

The first monograph to treat topological, group-theoretic, and geometric problems of ideal hydrodynamics and magnetohydrodynamics from a unified point of view. It describes the necessary preliminary notions both in hydrodynamics and pure mathematics with numerous examples and figures. The book is accessible to graduates as well as pure and applied mathematicians working in hydrodynamics, Lie groups, dynamical systems, and differential geometry.


Analysis and Topology

Analysis and Topology

Author: Simion Stoilow

Publisher: World Scientific

Published: 1998

Total Pages: 744

ISBN-13: 9789810227616

DOWNLOAD EBOOK

The goal of this book is to investigate further the interdisciplinary interaction between Mathematical Analysis and Topology. It provides an attempt to study various approaches in the topological applications and influence to Function Theory, Calculus of Variations, Functional Analysis and Approximation Theory. The volume is dedicated to the memory of S Stoilow.