Topological Methods in the Study of Boundary Value Problems

Topological Methods in the Study of Boundary Value Problems

Author: Pablo Amster

Publisher: Springer Science & Business Media

Published: 2013-10-23

Total Pages: 238

ISBN-13: 1461488931

DOWNLOAD EBOOK

This textbook is devoted to the study of some simple but representative nonlinear boundary value problems by topological methods. The approach is elementary, with only a few model ordinary differential equations and applications, chosen in such a way that the student may avoid most of the technical difficulties and focus on the application of topological methods. Only basic knowledge of general analysis is needed, making the book understandable to non-specialists. The main topics in the study of boundary value problems are present in this text, so readers with some experience in functional analysis or differential equations may also find some elements that complement and enrich their tools for solving nonlinear problems. In comparison with other texts in the field, this one has the advantage of a concise and informal style, thus allowing graduate and undergraduate students to enjoy some of the beauties of this interesting branch of mathematics. Exercises and examples are included throughout the book, providing motivation for the reader.


Boundary Value Problems From Higher Order Differential Equations

Boundary Value Problems From Higher Order Differential Equations

Author: Ravi P Agarwal

Publisher: World Scientific

Published: 1986-07-01

Total Pages: 321

ISBN-13: 9814513636

DOWNLOAD EBOOK

Contents: Some ExamplesLinear ProblemsGreen's FunctionMethod of Complementary FunctionsMethod of AdjointsMethod of ChasingSecond Order EquationsError Estimates in Polynomial InterpolationExistence and UniquenessPicard's and Approximate Picard's MethodQuasilinearization and Approximate QuasilinearizationBest Possible Results: Weight Function TechniqueBest Possible Results: Shooting MethodsMonotone Convergence and Further ExistenceUniqueness Implies ExistenceCompactness Condition and Generalized SolutionsUniqueness Implies UniquenessBoundary Value FunctionsTopological MethodsBest Possible Results: Control Theory MethodsMatching MethodsMaximal SolutionsMaximum PrincipleInfinite Interval ProblemsEquations with Deviating Arguments Readership: Graduate students, numerical analysts as well as researchers who are studying open problems. Keywords:Boundary Value Problems;Ordinary Differential Equations;Green's Function;Quasilinearization;Shooting Methods;Maximal Solutions;Infinite Interval Problems


Topological Methods for Ordinary Differential Equations

Topological Methods for Ordinary Differential Equations

Author: Patrick Fitzpatrick

Publisher: Springer

Published: 2006-11-14

Total Pages: 223

ISBN-13: 354047563X

DOWNLOAD EBOOK

The volume contains the texts of four courses, given by the authors at a summer school that sought to present the state of the art in the growing field of topological methods in the theory of o.d.e. (in finite and infinitedimension), and to provide a forum for discussion of the wide variety of mathematical tools which are involved. The topics covered range from the extensions of the Lefschetz fixed point and the fixed point index on ANR's, to the theory of parity of one-parameter families of Fredholm operators, and from the theory of coincidence degree for mappings on Banach spaces to homotopy methods for continuation principles. CONTENTS: P. Fitzpatrick: The parity as an invariant for detecting bifurcation of the zeroes of one parameter families of nonlinear Fredholm maps.- M. Martelli: Continuation principles and boundary value problems.- J. Mawhin: Topological degree and boundary value problems for nonlinear differential equations.- R.D. Nussbaum: The fixed point index and fixed point theorems.


Two-Point Boundary Value Problems: Lower and Upper Solutions

Two-Point Boundary Value Problems: Lower and Upper Solutions

Author: C. De Coster

Publisher: Elsevier

Published: 2006-03-21

Total Pages: 502

ISBN-13: 0080462472

DOWNLOAD EBOOK

This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction.· Presents the fundamental features of the method· Construction of lower and upper solutions in problems· Working applications and illustrated theorems by examples· Description of the history of the method and Bibliographical notes


Topological Degree Methods in Nonlinear Boundary Value Problems

Topological Degree Methods in Nonlinear Boundary Value Problems

Author: J. Mawhin

Publisher: American Mathematical Soc.

Published: 1979

Total Pages: 130

ISBN-13: 082181690X

DOWNLOAD EBOOK

Contains lectures from the CBMS Regional Conference held at Harvey Mudd College, June 1977. This monograph consists of applications to nonlinear differential equations of the author's coincidental degree. It includes an bibliography covering many aspects of the modern theory of nonlinear differential equations and the theory of nonlinear analysis.


Handbook of Topological Fixed Point Theory

Handbook of Topological Fixed Point Theory

Author: Robert F. Brown

Publisher: Springer Science & Business Media

Published: 2005-12-05

Total Pages: 966

ISBN-13: 1402032226

DOWNLOAD EBOOK

This book is the first in the world literature presenting all new trends in topological fixed point theory. Until now all books connected to the topological fixed point theory were devoted only to some parts of this theory. This book will be especially useful for post-graduate students and researchers interested in the fixed point theory, particularly in topological methods in nonlinear analysis, differential equations and dynamical systems. The content is also likely to stimulate the interest of mathematical economists, population dynamics experts as well as theoretical physicists exploring the topological dynamics.


Ordinary Differential Equations and Dynamical Systems

Ordinary Differential Equations and Dynamical Systems

Author: Gerald Teschl

Publisher: American Mathematical Society

Published: 2024-01-12

Total Pages: 370

ISBN-13: 147047641X

DOWNLOAD EBOOK

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.