Topics in Transcendental Algebraic Geometry

Topics in Transcendental Algebraic Geometry

Author: Phillip Griffiths

Publisher: Princeton University Press

Published: 1984-06-21

Total Pages: 332

ISBN-13: 9780691083391

DOWNLOAD EBOOK

"During 1981-1982 the Institute for Advanced Study held a special year on algebraic geometry. Naturally there were a number of seminars, and this volume is essentially the proceedings of one of these. The motif of the seminar was to explore the ways in which the recent developments in formal Hodge theory might be applied to problems in algebraic geometry."- introduction


Topics in Transcendental Algebraic Geometry. (AM-106), Volume 106

Topics in Transcendental Algebraic Geometry. (AM-106), Volume 106

Author: Phillip A. Griffiths

Publisher: Princeton University Press

Published: 2016-03-02

Total Pages: 328

ISBN-13: 140088165X

DOWNLOAD EBOOK

A classic treatment of transcendental algebraic geometry from the acclaimed Annals of Mathematics Studies series Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and most respected series in science publishing, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. To mark the continued success of the series, all books are available in paperback and as ebooks.


Algebraic Geometry

Algebraic Geometry

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 511

ISBN-13: 1475738498

DOWNLOAD EBOOK

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.


Topics in Cohomological Studies of Algebraic Varieties

Topics in Cohomological Studies of Algebraic Varieties

Author: Piotr Pragacz

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 321

ISBN-13: 3764373423

DOWNLOAD EBOOK

The articles in this volume study various cohomological aspects of algebraic varieties: - characteristic classes of singular varieties; - geometry of flag varieties; - cohomological computations for homogeneous spaces; - K-theory of algebraic varieties; - quantum cohomology and Gromov-Witten theory. The main purpose is to give comprehensive introductions to the above topics through a series of "friendly" texts starting from a very elementary level and ending with the discussion of current research. In the articles, the reader will find classical results and methods as well as new ones. Numerous examples will help to understand the mysteries of the cohomological theories presented. The book will be a useful guide to research in the above-mentioned areas. It is adressed to researchers and graduate students in algebraic geometry, algebraic topology, and singularity theory, as well as to mathematicians interested in homogeneous varieties and symmetric functions. Most of the material exposed in the volume has not appeared in books before. Contributors: Paolo Aluffi Michel Brion Anders Skovsted Buch Haibao Duan Ali Ulas Ozgur Kisisel Piotr Pragacz Jörg Schürmann Marek Szyjewski Harry Tamvakis


Algebraic Geometry over the Complex Numbers

Algebraic Geometry over the Complex Numbers

Author: Donu Arapura

Publisher: Springer Science & Business Media

Published: 2012-02-15

Total Pages: 326

ISBN-13: 1461418097

DOWNLOAD EBOOK

This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.


Algebraic Geometry III

Algebraic Geometry III

Author: A.N. Parshin

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 275

ISBN-13: 3662036622

DOWNLOAD EBOOK

This two-part EMS volume provides a succinct summary of complex algebraic geometry, coupled with a lucid introduction to the recent work on the interactions between the classical area of the geometry of complex algebraic curves and their Jacobian varieties. An excellent companion to the older classics on the subject.


Advances in Algebraic Geometry Motivated by Physics

Advances in Algebraic Geometry Motivated by Physics

Author: Emma Previato

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 310

ISBN-13: 082182810X

DOWNLOAD EBOOK

Our knowledge of objects of algebraic geometry such as moduli of curves, (real) Schubert classes, fundamental groups of complements of hyperplane arrangements, toric varieties, and variation of Hodge structures, has been enhanced recently by ideas and constructions of quantum field theory, such as mirror symmetry, Gromov-Witten invariants, quantum cohomology, and gravitational descendants. These are some of the themes of this refereed collection of papers, which grew out of the special session, ``Enumerative Geometry in Physics,'' held at the AMS meeting in Lowell, MA, April 2000. This session brought together mathematicians and physicists who reported on the latest results and open questions; all the abstracts are included as an Appendix, and also included are papers by some who could not attend. The collection provides an overview of state-of-the-art tools, links that connect classical and modern problems, and the latest knowledge available.


Hodge Theory and Complex Algebraic Geometry II: Volume 2

Hodge Theory and Complex Algebraic Geometry II: Volume 2

Author: Claire Voisin

Publisher: Cambridge University Press

Published: 2003-07-03

Total Pages: 363

ISBN-13: 1139437704

DOWNLOAD EBOOK

The 2003 second volume of this account of Kaehlerian geometry and Hodge theory starts with the topology of families of algebraic varieties. Proofs of the Lefschetz theorem on hyperplane sections, the Picard–Lefschetz study of Lefschetz pencils, and Deligne theorems on the degeneration of the Leray spectral sequence and the global invariant cycles follow. The main results of the second part are the generalized Noether–Lefschetz theorems, the generic triviality of the Abel–Jacobi maps, and most importantly Nori's connectivity theorem, which generalizes the above. The last part of the book is devoted to the relationships between Hodge theory and algebraic cycles. The book concludes with the example of cycles on abelian varieties, where some results of Bloch and Beauville, for example, are expounded. The text is complemented by exercises giving useful results in complex algebraic geometry. It will be welcomed by researchers in both algebraic and differential geometry.


Algebraic Curves

Algebraic Curves

Author: William Fulton

Publisher:

Published: 2008

Total Pages: 120

ISBN-13:

DOWNLOAD EBOOK

The aim of these notes is to develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. We have assumed that the reader is familiar with some basic properties of rings, ideals and polynomials, such as is often covered in a one-semester course in modern algebra; additional commutative algebra is developed in later sections.