139 The L. S. U. Low Temperature Gravity Wave Experiment, W. O. Hamilton, T. P. Bernat, D. G. Blair, W. C. Oelfke 149 Optimal Detection of Signals through Linear Devices with Thermal Noise Sources and Application to the Munich Frascati Weber-Type Gravitational Wave Detectors, P. Kafka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Synchrotron Radiation and Astrophysics, A. A."
In Topics in the Foundations of General Relativity and Newtonian Gravitation Theory, David B. Malament presents the basic logical-mathematical structure of general relativity and considers a number of special topics concerning the foundations of general relativity and its relation to Newtonian gravitation theory. These special topics include the geometrized formulation of Newtonian theory (also known as Newton-Cartan theory), the concept of rotation in general relativity, and Gödel spacetime. One of the highlights of the book is a no-go theorem that can be understood to show that there is no criterion of orbital rotation in general relativity that fully answers to our classical intuitions. Topics is intended for both students and researchers in mathematical physics and philosophy of science.
The two volumes of 'Gravitational Waves' provide a comprehensive and detailed account of the physics of gravitational waves. Volume 2 discusses what can be learned from gravitational waves in astrophysics and in cosmology, by systematising a large body of theoretical developments that have taken place over the last decades.
This book summarizes recent developments in the research area of quantum gravity phenomenology. A series of short and nontechnical essays lays out the prospects of various experimental possibilities and their current status. Finding observational evidence for the quantization of space-time was long thought impossible. In the last decade however, new experimental design and technological advances have changed the research landscape and opened new perspectives on quantum gravity. Formerly dominated by purely theoretical constructions, quantum gravity now has a lively phenomenology to offer. From high precision measurements using macroscopic quantum oscillators to new analysis methods of the cosmic microwave background, no stone is being left unturned in the experimental search for quantum gravity. This book sheds new light on the connection of astroparticle physics with the quantum gravity problem. Gravitational waves and their detection are covered. It illustrates findings from the interconnection between general relativity, black holes and Planck stars. Finally, the return on investment in quantum-gravitation research is illuminated. The book is intended for graduate students and researchers entering the field.
The Feynman Lectures on Gravitation are based on notes prepared during a course on gravitational physics that Richard Feynman taught at Caltech during the 1962-63 academic year. For several years prior to these lectures, Feynman thought long and hard about the fundamental problems in gravitational physics, yet he published very little. These lectures represent a useful record of his viewpoints and some of his insights into gravity and its application to cosmology, superstars, wormholes, and gravitational waves at that particular time. The lectures also contain a number of fascinating digressions and asides on the foundations of physics and other issues.Characteristically, Feynman took an untraditional non-geometric approach to gravitation and general relativity based on the underlying quantum aspects of gravity. Hence, these lectures contain a unique pedagogical account of the development of Einstein's general theory of relativity as the inevitable result of the demand for a self-consistent theory of a massless spin-2 field (the graviton) coupled to the energy-momentum tensor of matter. This approach also demonstrates the intimate and fundamental connection between gauge invariance and the principle of equivalence.
Spacetime physics -- Physics in flat spacetime -- The mathematics of curved spacetime -- Einstein's geometric theory of gravity -- Relativistic stars -- The universe -- Gravitational collapse and black holes -- Gravitational waves -- Experimental tests of general relativity -- Frontiers
'The book concentrates attention on extended alternative theories of gravity and on the best astrophysical laboratories to probe the strong gravity-field regime: black holes, pulsars and neutron stars … Readers will likely share the satisfaction the editor and contributors say they experienced as they organized the book.'SirReadaLotFor more than a century, our understanding of gravitational physics was based on Albert Einstein's theory of General Relativity, which fundamentally changed our understanding of the Universe, its origin, and its evolutionary process. General Relativity accurately describes a large number of phenomena on very different scales. As such, it has been very well tested and its remarkable predictions are compatible with most experimental and observational data. However, the observational and experimental results compatible with General Relativity fall in its vast majority under the weak gravitational field regime. In recent years, discrepancies between the data and the corresponding predictions of General Relativity have been observed and have generated intense research activity. One of the most critical aspects of General Relativity is the presence of singularities in extreme physical situations. These discrepancies indicate that either the parameters of the theory must be modified in the regime of strong field gravity/high energy and large space-time curvature, or the theory itself should be modified. In this book, we focus our attention on extended alternative gravity theories and the best astrophysical laboratories to probe the strong field regime: black holes, pulsars, and neutron stars.