Rough Sets

Rough Sets

Author: Lech Polkowski

Publisher: Springer Science & Business Media

Published: 2013-06-05

Total Pages: 549

ISBN-13: 3790817767

DOWNLOAD EBOOK

A comprehensive introduction to mathematical structures essential for Rough Set Theory. The book enables the reader to systematically study all topics of rough set theory. After a detailed introduction in Part 1 along with an extensive bibliography of current research papers. Part 2 presents a self-contained study that brings together all the relevant information from respective areas of mathematics and logics. Part 3 provides an overall picture of theoretical developments in rough set theory, covering logical, algebraic, and topological methods. Topics covered include: algebraic theory of approximation spaces, logical and set-theoretical approaches to indiscernibility and functional dependence, topological spaces of rough sets. The final part gives a unique view on mutual relations between fuzzy and rough set theories (rough fuzzy and fuzzy rough sets). Over 300 excercises allow the reader to master the topics considered. The book can be used as a textbook and as a reference work.


Rough Sets

Rough Sets

Author: Z. Pawlak

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 247

ISBN-13: 9401135347

DOWNLOAD EBOOK

To-date computers are supposed to store and exploit knowledge. At least that is one of the aims of research fields such as Artificial Intelligence and Information Systems. However, the problem is to understand what knowledge means, to find ways of representing knowledge, and to specify automated machineries that can extract useful information from stored knowledge. Knowledge is something people have in their mind, and which they can express through natural language. Knowl edge is acquired not only from books, but also from observations made during experiments; in other words, from data. Changing data into knowledge is not a straightforward task. A set of data is generally disorganized, contains useless details, although it can be incomplete. Knowledge is just the opposite: organized (e.g. laying bare dependencies, or classifications), but expressed by means of a poorer language, i.e. pervaded by imprecision or even vagueness, and assuming a level of granularity. One may say that knowledge is summarized and organized data - at least the kind of knowledge that computers can store.


Rough Sets and Data Mining

Rough Sets and Data Mining

Author: T.Y. Lin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 429

ISBN-13: 1461314615

DOWNLOAD EBOOK

Rough Sets and Data Mining: Analysis of Imprecise Data is an edited collection of research chapters on the most recent developments in rough set theory and data mining. The chapters in this work cover a range of topics that focus on discovering dependencies among data, and reasoning about vague, uncertain and imprecise information. The authors of these chapters have been careful to include fundamental research with explanations as well as coverage of rough set tools that can be used for mining data bases. The contributing authors consist of some of the leading scholars in the fields of rough sets, data mining, machine learning and other areas of artificial intelligence. Among the list of contributors are Z. Pawlak, J Grzymala-Busse, K. Slowinski, and others. Rough Sets and Data Mining: Analysis of Imprecise Data will be a useful reference work for rough set researchers, data base designers and developers, and for researchers new to the areas of data mining and rough sets.


Topics in Rough Set Theory

Topics in Rough Set Theory

Author: Seiki Akama

Publisher: Springer Nature

Published: 2019-09-10

Total Pages: 208

ISBN-13: 3030295664

DOWNLOAD EBOOK

This book discusses current topics in rough set theory. Since Pawlak’s rough set theory was first proposed to offer a basis for imprecise and uncertain data and reasoning from data, many workers have investigated its foundations and applications. Examining various topical issues, including object-oriented rough set models, recommendation systems, decision tables, and granular computing, the book is a valuable resource for students and researchers in the field.


Rough Set Theory: A True Landmark in Data Analysis

Rough Set Theory: A True Landmark in Data Analysis

Author: Ajith Abraham

Publisher: Springer Science & Business Media

Published: 2009-02-26

Total Pages: 330

ISBN-13: 3540899200

DOWNLOAD EBOOK

Part 1 of this book deals with theoretical contributions of rough set theory, and parts 2 and 3 focus on several real world data mining applications. The book thoroughly explores recent results in rough set research.


Transactions on Rough Sets II

Transactions on Rough Sets II

Author: James F. Peters

Publisher: Springer

Published: 2004-11-29

Total Pages: 371

ISBN-13: 3540277781

DOWNLOAD EBOOK

The LNCS journal Transactions on Rough Sets is devoted to the entire spectrum of rough sets related issues, starting from logical and mathematical foundations, through all aspects of rough set theory and its applications, such as data mining, knowledge discovery, and intelligent information processing, to relations between rough sets and other approaches to uncertainty, vagueness and incompleteness, such as fuzzy sets and theory of evidence. This second volume of the Transactions on Rough Sets presents 17 thoroughly reviewed revised papers devoted to rough set theory, fuzzy set theory; these papers highlight important aspects of these theories, their interrelation and application in various fields.


Incomplete Information: Rough Set Analysis

Incomplete Information: Rough Set Analysis

Author: Ewa Orlowska

Publisher: Physica

Published: 2013-03-14

Total Pages: 615

ISBN-13: 3790818887

DOWNLOAD EBOOK

In 1982, Professor Pawlak published his seminal paper on what he called "rough sets" - a work which opened a new direction in the development of theories of incomplete information. Today, a decade and a half later, the theory of rough sets has evolved into a far-reaching methodology for dealing with a wide variety of issues centering on incompleteness and imprecision of information - issues which playa key role in the conception and design of intelligent information systems. "Incomplete Information: Rough Set Analysis" - or RSA for short - presents an up-to-date and highly authoritative account of the current status of the basic theory, its many extensions and wide-ranging applications. Edited by Professor Ewa Orlowska, one of the leading contributors to the theory of rough sets, RSA is a collection of nineteen well-integrated chapters authored by experts in rough set theory and related fields. A common thread that runs through these chapters ties the concept of incompleteness of information to those of indiscernibility and similarity.


Data Mining and Knowledge Discovery in Real Life Applications

Data Mining and Knowledge Discovery in Real Life Applications

Author: Julio Ponce

Publisher: BoD – Books on Demand

Published: 2009-01-01

Total Pages: 404

ISBN-13: 390261353X

DOWNLOAD EBOOK

This book presents four different ways of theoretical and practical advances and applications of data mining in different promising areas like Industrialist, Biological, and Social. Twenty six chapters cover different special topics with proposed novel ideas. Each chapter gives an overview of the subjects and some of the chapters have cases with offered data mining solutions. We hope that this book will be a useful aid in showing a right way for the students, researchers and practitioners in their studies.


Rough Set Methods and Applications

Rough Set Methods and Applications

Author: Lech Polkowski

Publisher: Physica

Published: 2012-10-07

Total Pages: 679

ISBN-13: 3790818402

DOWNLOAD EBOOK

Rough set approach to reasoning under uncertainty is based on inducing knowledge representation from data under constraints expressed by discernibility or, more generally, similarity of objects. Knowledge derived by this approach consists of reducts, decision or association rules, dependencies, templates, or classifiers. This monograph presents the state of the art of this area. The reader will find here a deep theoretical discussion of relevant notions and ideas as well as rich inventory of algorithmic and heuristic tools for knowledge discovery by rough set methods. An extensive bibliography will help the reader to get an acquaintance with this rapidly growing area of research.


Big Data Preprocessing

Big Data Preprocessing

Author: Julián Luengo

Publisher: Springer Nature

Published: 2020-03-16

Total Pages: 193

ISBN-13: 3030391051

DOWNLOAD EBOOK

This book offers a comprehensible overview of Big Data Preprocessing, which includes a formal description of each problem. It also focuses on the most relevant proposed solutions. This book illustrates actual implementations of algorithms that helps the reader deal with these problems. This book stresses the gap that exists between big, raw data and the requirements of quality data that businesses are demanding. This is called Smart Data, and to achieve Smart Data the preprocessing is a key step, where the imperfections, integration tasks and other processes are carried out to eliminate superfluous information. The authors present the concept of Smart Data through data preprocessing in Big Data scenarios and connect it with the emerging paradigms of IoT and edge computing, where the end points generate Smart Data without completely relying on the cloud. Finally, this book provides some novel areas of study that are gathering a deeper attention on the Big Data preprocessing. Specifically, it considers the relation with Deep Learning (as of a technique that also relies in large volumes of data), the difficulty of finding the appropriate selection and concatenation of preprocessing techniques applied and some other open problems. Practitioners and data scientists who work in this field, and want to introduce themselves to preprocessing in large data volume scenarios will want to purchase this book. Researchers that work in this field, who want to know which algorithms are currently implemented to help their investigations, may also be interested in this book.