Topics In Nanoscience (In 2 Parts)

Topics In Nanoscience (In 2 Parts)

Author: Wolfram Schommers

Publisher: World Scientific

Published: 2021-12-17

Total Pages: 872

ISBN-13: 9811256136

DOWNLOAD EBOOK

With the development of the scanning tunneling microscope, nanoscience became an important discipline. Single atoms could be manipulated in a controlled manner, and it became possible to change matter at its 'ultimate' level; it is the level on which the properties of matter emerge. This possibility enables to construct and to produce devices, materials, etc. with very small sizes and completely new properties. That opens up new perspectives for technology and is in particular relevant in connection with nano-engineering.Nanosystems are unimaginably small and very fast. No doubt, this is an important characteristic. But there is another feature, possibly more relevant, in connection with nanoscience and nanotechnology. The essential point here is that we work at the 'ultimate level'. This is the smallest level at which the properties of our world emerge, at which functional matter can exist. In particular, at this level biological individuality comes into existence. This situation can be expressed in absolute terms: This is not only the strongest material ever made, this is the strongest material it will ever be possible to make (D Ratner and M Ratner, Nanotechnology and Homeland Security). This is a very general statement. All aspects of matter are concerned here. Through the variation of the composition various forms of matter emerge with different items.Nanosystems are usually small, but they offer nevertheless the possibility to vary the structure of atomic (molecular) ensembles, creating a diversity of new material-specific properties. A large variety of experimental possibilities come into play and flexible theoretical tools are needed at the basic level. This is reflected in the different disciplines: In nanoscience and nanotechnology we have various directions: Materials science, functional nanomaterials, nanoparticles, food chemistry, medicine with brain research, quantum and molecular computing, bioinformatics, magnetic nanostructures, nano-optics, nano-electronics, etc.The properties of matter, which are involved within these nanodisciplines, are ultimate in character, i.e., their characteristic properties come into existence at this level. The book is organized in this respect.


Topics In Nanoscience - Part Ii: Quantized Structures, Nanoelectronics, Thin Films Nanosystems: Typical Results And Future

Topics In Nanoscience - Part Ii: Quantized Structures, Nanoelectronics, Thin Films Nanosystems: Typical Results And Future

Author: Wolfram Schommers

Publisher: World Scientific

Published: 2021-12-17

Total Pages: 406

ISBN-13: 9811243883

DOWNLOAD EBOOK

With the development of the scanning tunneling microscope, nanoscience became an important discipline. Single atoms could be manipulated in a controlled manner, and it became possible to change matter at its 'ultimate' level; it is the level on which the properties of matter emerge. This possibility enables to construct and to produce devices, materials, etc. with very small sizes and completely new properties. That opens up new perspectives for technology and is in particular relevant in connection with nano-engineering.Nanosystems are unimaginably small and very fast. No doubt, this is an important characteristic. But there is another feature, possibly more relevant, in connection with nanoscience and nanotechnology. The essential point here is that we work at the 'ultimate level'. This is the smallest level at which the properties of our world emerge, at which functional matter can exist. In particular, at this level biological individuality comes into existence. This situation can be expressed in absolute terms: This is not only the strongest material ever made, this is the strongest material it will ever be possible to make (D Ratner and M Ratner, Nanotechnology and Homeland Security). This is a very general statement. All aspects of matter are concerned here. Through the variation of the composition various forms of matter emerge with different items.Nanosystems are usually small, but they offer nevertheless the possibility to vary the structure of atomic (molecular) ensembles, creating a diversity of new material-specific properties. A large variety of experimental possibilities come into play and flexible theoretical tools are needed at the basic level. This is reflected in the different disciplines: In nanoscience and nanotechnology we have various directions: Materials science, functional nanomaterials, nanoparticles, food chemistry, medicine with brain research, quantum and molecular computing, bioinformatics, magnetic nanostructures, nano-optics, nano-electronics, etc.The properties of matter, which are involved within these nanodisciplines, are ultimate in character, i.e., their characteristic properties come into existence at this level. The book is organized in this respect.


Topics In Nanoscience - Part I: Basic Views, Complex Nanosystems: Typical Results And Future

Topics In Nanoscience - Part I: Basic Views, Complex Nanosystems: Typical Results And Future

Author: Wolfram Schommers

Publisher: World Scientific

Published: 2021-12-17

Total Pages: 466

ISBN-13: 9811243875

DOWNLOAD EBOOK

With the development of the scanning tunneling microscope, nanoscience became an important discipline. Single atoms could be manipulated in a controlled manner, and it became possible to change matter at its 'ultimate' level; it is the level on which the properties of matter emerge. This possibility enables to construct and to produce devices, materials, etc. with very small sizes and completely new properties. That opens up new perspectives for technology and is in particular relevant in connection with nano-engineering.Nanosystems are unimaginably small and very fast. No doubt, this is an important characteristic. But there is another feature, possibly more relevant, in connection with nanoscience and nanotechnology. The essential point here is that we work at the 'ultimate level'. This is the smallest level at which the properties of our world emerge, at which functional matter can exist. In particular, at this level biological individuality comes into existence. This situation can be expressed in absolute terms: This is not only the strongest material ever made, this is the strongest material it will ever be possible to make (D Ratner and M Ratner, Nanotechnology and Homeland Security). This is a very general statement. All aspects of matter are concerned here. Through the variation of the composition various forms of matter emerge with different items.Nanosystems are usually small, but they offer nevertheless the possibility to vary the structure of atomic (molecular) ensembles, creating a diversity of new material-specific properties. A large variety of experimental possibilities come into play and flexible theoretical tools are needed at the basic level. This is reflected in the different disciplines: In nanoscience and nanotechnology we have various directions: Materials science, functional nanomaterials, nanoparticles, food chemistry, medicine with brain research, quantum and molecular computing, bioinformatics, magnetic nanostructures, nano-optics, nano-electronics, etc.The properties of matter, which are involved within these nanodisciplines, are ultimate in character, i.e., their characteristic properties come into existence at this level. The book is organized in this respect.


Topics in Nanoscience - Part II: Quantized Structures, Nanoelectronics, Thin Films

Topics in Nanoscience - Part II: Quantized Structures, Nanoelectronics, Thin Films

Author: Wolfram Schommers

Publisher: Foundations of Natural Sci

Published: 2022-01-31

Total Pages: 250

ISBN-13: 9789811242694

DOWNLOAD EBOOK

This introductory compendium teaches engineering students how the most common electronic sensors and actuators work. It distinguishes from other books by including the physical and chemical phenomena used as well as the features and specifications of many sensors and actuators. The useful reference text also contains an introductory chapter that deals with their specifications and classification, a chapter about sensor and actuator networks, and a special topic dealing with the fabrication of sensors and actuators using microelectromechanical systems techniques (sensors and actuators on a chip). A set of exercises and six laboratory projects are highlighted.


Introduction to Nanoscience

Introduction to Nanoscience

Author: Stuart Lindsay

Publisher: OUP Oxford

Published: 2009-10-22

Total Pages: 480

ISBN-13: 0191609277

DOWNLOAD EBOOK

Nanoscience is not physics, chemistry, engineering or biology. It is all of them, and it is time for a text that integrates the disciplines. This is such a text, aimed at advanced undergraduates and beginning graduate students in the sciences. The consequences of smallness and quantum behaviour are well known and described Richard Feynman's visionary essay 'There's Plenty of Room at the Bottom' (which is reproduced in this book). Another, critical, but thus far neglected, aspect of nanoscience is the complexity of nanostructures. Hundreds, thousands or hundreds of thousands of atoms make up systems that are complex enough to show what is fashionably called 'emergent behaviour'. Quite new phenomena arise from rare configurations of the system. Examples are the Kramer's theory of reactions (Chapter 3), the Marcus theory of electron transfer (Chapter 8), and enzyme catalysis, molecular motors, and fluctuations in gene expression and splicing, all covered in the final Chapter on Nanobiology. The book is divided into three parts. Part I (The Basics) is a self-contained introduction to quantum mechanics, statistical mechanics and chemical kinetics, calling on no more than basic college calculus. A conceptual approach and an array of examples and conceptual problems will allow even those without the mathematical tools to grasp much of what is important. Part II (The Tools) covers microscopy, single molecule manipulation and measurement, nanofabrication and self-assembly. Part III (Applications) covers electrons in nanostructures, molecular electronics, nano-materials and nanobiology. Each chapter starts with a survey of the required basics, but ends by making contact with current research literature.


Advanced Pharmaceutical and Herbal Nanoscience for Targeted Drug Delivery Systems Part II

Advanced Pharmaceutical and Herbal Nanoscience for Targeted Drug Delivery Systems Part II

Author: Swarnlata Saraf

Publisher: Bentham Science Publishers

Published: 2022-05-30

Total Pages: 326

ISBN-13: 9815036556

DOWNLOAD EBOOK

This 2-part reference informs readers about the application of drug delivery technologies to herbal medicines. Chapters cover a broad range of major topics on the subject of targeted drug delivery systems. These topics include the application of drug delivery systems for herbal nanomedicines, drug development issues, emerging technologies, adaptations for clinical use, market prospects and challenges of industrial commercialization. Chapters have been contributed by several experts in pharmaceutical chemistry and blend theoretical knowledge with practical aspects of drug delivery. Part II covers the following topics: - Pharmaceutical nanosciences and their application in the delivery of various phytoconstituents - Design of cosmeceutical drug delivery systems: the role of nanotechnology in cosmeceuticals - Transfersomes: a novel vesicular transdermal delivery system - Self-nano/micro emulsified drug delivery systems - Phytosomes - The role of nanomedicines in ocular drug delivery systems - Colloidosomes as an efficient novel drug delivery system: an update - Herbal nanoscience: challenges and regulatory perspectives - Vitamins based nanomedicine approach - Dendrimers: a versatile nanoplatform for advanced targeting and bioactive(s) delivery - Targeted drug delivery systems for cells and cell organelles - Liposomes for herbal drug delivery - AI in pharmacy, herbal medicine and drug delivery: sci-fi or reality? This reference is a valuable resource for scholars that creates awareness of novel drug delivery systems as well as their promising applications in drug targeting, and nanotherapeutics for specific diseases.


Issues in Nanoscience and Nanoscale Research: 2013 Edition

Issues in Nanoscience and Nanoscale Research: 2013 Edition

Author:

Publisher: ScholarlyEditions

Published: 2013-05-01

Total Pages: 280

ISBN-13: 1490107630

DOWNLOAD EBOOK

Issues in Nanoscience and Nanoscale Research: 2013 Edition is a ScholarlyBrief™ that delivers timely, authoritative, comprehensive, and specialized information about Additional Research in a concise format. The editors have built Issues in Nanoscience and Nanoscale Research: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Additional Research in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Nanoscience and Nanoscale Research: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.


Advanced Materials and Nano Systems: Theory and Experiment - Part 2

Advanced Materials and Nano Systems: Theory and Experiment - Part 2

Author: Dibya Prakash Rai

Publisher: Bentham Science Publishers

Published: 2022-09-30

Total Pages: 299

ISBN-13: 9815049976

DOWNLOAD EBOOK

The discovery of new materials and the manipulation of their exotic properties for device fabrication is crucial for advancing technology. Nanoscience, and the creation of nanomaterials have taken materials science and electronics to new heights for the benefit of mankind.Advanced Materials and Nanosystems: Theory and Experiment covers several topics of nanoscience research. The compiled chapters aim to update students, teachers, and scientists by highlighting modern developments in materials science theory and experiments. The significant role of new materials in future technology is also demonstrated. The book serves as a reference for curriculum development in technical institutions and research programs in the field of physics, chemistry and applied areas of science like materials science, chemical engineering and electronics. This part covers 12 topics in these areas: - Recent advancements in nanotechnology: a human health Perspective. - An exploratory study on characteristics of SWIRL of AlGaAs/GaAs in advanced bio based nanotechnological systems. - Electronic structure of the half-Heusler ScAuSn, LuAuSn and their superlattice. - Recent trends in nanosystems. - Improvement of performance of single and multicrystalline silicon solar cell using low-temperature surface passivation layer and antireflection coating. - Advanced materials and nanosystems. - Effect of nanostructure-materials on optical properties of some rare earth ions doped in silica matrix. - Nd2Fe14B and SmCO5: a permanent magnet for magnetic data storage and data transfer technology. - Visible light induced photocatalytic activity of MWCNTS decorated sulfide based nano photocatalysts. - Organic solar cells. - Neodymium doped lithium borosilicate glasses. - Comprehensive quantum mechanical study of structural features, reactivity, molecular properties and wave function-based characteristics of capmatinib.


Foundations for Nanoscience and Nanotechnology

Foundations for Nanoscience and Nanotechnology

Author: Nils O. Petersen

Publisher: CRC Press

Published: 2017-04-07

Total Pages: 344

ISBN-13: 1482259087

DOWNLOAD EBOOK

Do you ever wonder why size is so important at the scale of nanosystems? Do you want to understand the fundamental principles that govern the properties of nanomaterials? Do you want to establish a foundation for working in the field of nanoscience and nanotechnology? Then this book is written with you in mind. Foundations for Nanoscience and Nanotechnology provides some of the physical chemistry needed to understand why properties of small systems differ both from their constituent molecular entities and from the corresponding bulk matter. This is not a book about nanoscience and nanotechnology, but rather an exposition of basic knowledge required to understand these fields. The collection of topics makes it unique, and these topics include: The concept of quantum confinement and its consequences for electronic behaviour (Part II) The importance of surface thermodynamics for activity and interactions of nanoscale systems (Part III) The need to consider fluctuations as well as mean properties in small systems (Part IV) The interaction of light with matter and specific applications of spectroscopy and microscopy (Part V) This book is written for senior undergraduates or junior graduate students in science or engineering disciplines who wish to learn about or work in the areas of nanoscience and nanotechnology, but who do not have the requisite background in chemistry or physics. It may also be useful as a refresher or summary text for chemistry and physics students since the material is focused on those aspects of quantum mechanics, thermodynamics, and statistical mechanics that specifically relate to the size of objects.