This monograph gives a systematic account of certain important topics pertaining to field theory, including the central ideas, basic results and fundamental methods.Avoiding excessive technical detail, the book is intended for the student who has completed the equivalent of a standard first-year graduate algebra course. Thus it is assumed that the reader is familiar with basic ring-theoretic and group-theoretic concepts. A chapter on algebraic preliminaries is included, as well as a fairly large bibliography of works which are either directly relevant to the text or offer supplementary material of interest.
Since the advent of Yang–Mills theories and supersymmetry in the 1970s, quantum field theory - the basis of the modern description of physical phenomena at the fundamental level - has undergone revolutionary developments. This is the first systematic and comprehensive text devoted specifically to modern field theory, bringing readers to the cutting edge of current research. The book emphasizes nonperturbative phenomena and supersymmetry. It includes a thorough discussion of various phases of gauge theories, extended objects and their quantization, and global supersymmetry from a modern perspective. Featuring extensive cross-referencing from traditional topics to recent breakthroughs in the field, it prepares students for independent research. The side boxes summarizing the main results and over 70 exercises make this an indispensable book for graduate students and researchers in theoretical physics.
As the interaction of mathematics and theoretical physics continues to intensify, the theories developed in mathematics are being applied to physics, and conversely. This book centers around the theory of primitive forms which currently plays an active and key role in topological field theory (theoretical physics), but was originally developed as a mathematical notion to define a "good period mapping" for a family of analytic structures. The invited papers in this volume are expository in nature by participants of the Taniguchi Symposium on "Topological Field Theory, Primitive Forms and Related Topics" and the RIMS Symposium bearing the same title, both held in Kyoto. The papers reflect the broad research of some of the world's leading mathematical physicists, and should serve as an excellent resource for researchers as well as graduate students of both disciplines.
The Problem Book in Quantum Field Theory contains about 200 problems with solutions or hints that help students to improve their understanding and develop skills necessary for pursuing the subject. It deals with the Klein-Gordon and Dirac equations, classical field theory, canonical quantization of scalar, Dirac and electromagnetic fields, the processes in the lowest order of perturbation theory, renormalization and regularization. The solutions are presented in a systematic and complete manner. The material covered and the level of exposition make the book appropriate for graduate and undergraduate students in physics, as well as for teachers and researchers.
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it grew out of courses on field theory and particle physics taught at Columbia University and the City College of CUNY. The first few chapters, up to Chapter 12, contain material that generally goes into any course on quantum field theory, although there are a few nuances of presentation which readers may find to be different from other books. This first part of the book can be used for a general course on field theory, omitting, perhaps, the last three sections in Chapter 3, the last two in Chapter 8 and sections 6 and 7 in Chapter 10. The remaining chapters cover some of the more modern developments over the last three decades, involving topological and geometrical features. The introduction given to the mathematical basis of this part of the discussion is necessarily brief and should be accompanied by books on the relevant mathematical topics as indicated in the bibliography. Professor Nair also concentrates on developments pertinent to a better understanding of the standard model. There is no discussion of supersymmetry, supergravity, developments in field theory inspired by string theory, etc. There is also no detailed discussion of the renormalization group. Each of these topics would require a book in its own right to do justice to the topic. Quantum Field Theory: A Modern Perspective serves as a portal to so many more topics of detailed and ongoing research, referring readers to more detailed treatments for many specific topics. The book also contains extensive references, providing readers a more comprehensive perspective on the literature and the historical development of the subject. V. Parameswaran Nair is Professor of Physics at City College of The City University of New York (CUNY). Professor Nair has held Visiting Professorships at The Abdus Salam International Center for Theoretical Physics, Rockefeller University, Institute for Advanced Study at Princeton, and Massachusetts Institute of Technology.
This book comprises the second half of a quantum field theory (QFT) course for graduate students. It gives a concise introduction to advanced concepts that are important for research in elementary particle theory. Topics include the path integral, loop expansion, Feynman rules, various regularization methods, renormalization, running couplings and the renormalization group, fixed points and asymptotic freedom, effective action, Coleman-Weinberg effective potential, fermions, the axial anomaly, QED, gauge fixing, nonabelian gauge theories, unitarity, optical theorem, Slavnov-Taylor identities, beta function of Yang-Mills theory, a heuristic derivation of asymptotic freedom, instantons in SU(N) gauge theory, theta vacua and the strong CP problem. Exercises are included and are intended for advanced graduate students or postdocs seeking to deepen their understanding of QFT.
In this volume, topics are drawn from field theory, especially gauge field theory, as applied to particle, condensed matter and gravitational physics, and concern a variety of interesting subjects. These include geometricalDtopological effects in quantum theory, fractional charge, time travel, relativistic quantized fields in and out of thermal equilibrium and quantum modifications of symmetry in physical systems.Many readers will find this a useful volume, especially theoretical physicists and mathematicians. The material will be of interest to both the expert who will find well-presented novel and stimulating viewpoints of various subjects and the novice who will find complete, detailed and precise descriptions of important topics of current interest, in theoretical and mathematical physics.
The fields of algebraic functions of one variable appear in several areas of mathematics: complex analysis, algebraic geometry, and number theory. This text adopts the latter perspective by applying an arithmetic-algebraic viewpoint to the study of function fields as part of the algebraic theory of numbers. The examination explains both the similarities and fundamental differences between function fields and number fields, including many exercises and examples to enhance understanding and motivate further study. The only prerequisites are a basic knowledge of field theory, complex analysis, and some commutative algebra.