Top-Quark Pair Production Cross Sections and Calibration of the Top-Quark Monte-Carlo Mass

Top-Quark Pair Production Cross Sections and Calibration of the Top-Quark Monte-Carlo Mass

Author: Jan Kieseler

Publisher: Springer

Published: 2016-06-15

Total Pages: 172

ISBN-13: 3319400053

DOWNLOAD EBOOK

This thesis presents the first experimental calibration of the top-quark Monte-Carlo mass. It also provides the top-quark mass-independent and most precise top-quark pair production cross-section measurement to date. The most precise measurements of the top-quark mass obtain the top-quark mass parameter (Monte-Carlo mass) used in simulations, which are partially based on heuristic models. Its interpretation in terms of mass parameters used in theoretical calculations, e.g. a running or a pole mass, has been a long-standing open problem with far-reaching implications beyond particle physics, even affecting conclusions on the stability of the vacuum state of our universe. In this thesis, this problem is solved experimentally in three steps using data obtained with the compact muon solenoid (CMS) detector. The most precise top-quark pair production cross-section measurements to date are performed. The Monte-Carlo mass is determined and a new method for extracting the top-quark mass from theoretical calculations is presented. Lastly, the top-quark production cross-sections are obtained – for the first time – without residual dependence on the top-quark mass, are interpreted using theoretical calculations to determine the top-quark running- and pole mass with unprecedented precision, and are fully consistently compared with the simultaneously obtained top-quark Monte-Carlo mass.


First Measurement of the Running of the Top Quark Mass

First Measurement of the Running of the Top Quark Mass

Author: Matteo M. Defranchis

Publisher: Springer Nature

Published: 2022-01-03

Total Pages: 170

ISBN-13: 3030903761

DOWNLOAD EBOOK

In this thesis, the first measurement of the running of the top quark mass is presented. This is a fundamental quantum effect that had never been studied before. Any deviation from the expected behaviour can be interpreted as a hint of the presence of physics beyond the Standard Model. All relevant aspects of the analysis are extensively described and documented. This thesis also describes a simultaneous measurement of the inclusive top quark-antiquark production cross section and the top quark mass in the simulation. The measured cross section is also used to precisely determine the values of the top quark mass and the strong coupling constant by comparing to state-of-the-art theoretical predictions. All the theoretical and experimental aspects relevant to the results presented in this thesis are discussed in the initial chapters in a concise but complete way, which makes the material accessible to a wider audience.


From My Vast Repertoire...: Guido Altarelli's Legacy

From My Vast Repertoire...: Guido Altarelli's Legacy

Author: Stefano Forte

Publisher: World Scientific

Published: 2018-10-24

Total Pages: 465

ISBN-13: 9813238062

DOWNLOAD EBOOK

'What makes this collection unusual and refreshing is that it is not the more common ‘Festschrift’ written by specialists for specialists, but a broad set of topical summaries and analyses addressed to a wide readership of particle physicists. Inevitably, some of the sections are more advanced in their treatment than others, but most of the material will be accessible and helpful to researchers at all levels, and in particular to those working on experiments at CERN, where Altarelli spent many years in the theory group. It is hard to do justice to the varied contents of this excellent collection … I can only recommend that anyone involved in particle research should turn to the web for a full description of the richness of material that is included here … There is something here for everyone, and much for most. I’m sure Altarelli would have been pleased with that! The Editors are to be complimented for their initiative in making this unique volume possible.'Contemporary PhysicsGuido Altarelli was a leading figure in 20th century particle physics. His scientific contributions and leadership played a key role in the development of the Standard Model of fundamental interactions, as well as the current search for new physics beyond it, both at and beyond CERN. This book is a collection of original contributions, at the cutting edge of scientific research, by some of the leading theoretical and experimental high-energy physicists currently in the field. These were inspired by Guido's ideas, whether directly or indirectly. This book is ideal for researchers looking to keep up with the latest developments in high-energy physics.


Top Quark Physics at Hadron Colliders

Top Quark Physics at Hadron Colliders

Author: Arnulf Quadt

Publisher: Springer Science & Business Media

Published: 2007-08-16

Total Pages: 166

ISBN-13: 3540710604

DOWNLOAD EBOOK

This will be a required acquisition text for academic libraries. More than ten years after its discovery, still relatively little is known about the top quark, the heaviest known elementary particle. This extensive survey summarizes and reviews top-quark physics based on the precision measurements at the Fermilab Tevatron Collider, as well as examining in detail the sensitivity of these experiments to new physics. Finally, the author provides an overview of top quark physics at the Large Hadron Collider.


Top Quark Pair Production

Top Quark Pair Production

Author: Anna Christine Henrichs

Publisher: Springer Science & Business Media

Published: 2013-10-04

Total Pages: 231

ISBN-13: 3319014870

DOWNLOAD EBOOK

Before any kind of new physics discovery could be made at the LHC, a precise understanding and measurement of the Standard Model of particle physics' processes was necessary. The book provides an introduction to top quark production in the context of the Standard Model and presents two such precise measurements of the production of top quark pairs in proton-proton collisions at a center-of-mass energy of 7 TeV that were observed with the ATLAS Experiment at the LHC. The presented measurements focus on events with one charged lepton, missing transverse energy and jets. Using novel and advanced analysis techniques as well as a good understanding of the detector, they constitute the most precise measurements of the quantity at that time.


CMS Pixel Detector Upgrade and Top Quark Pole Mass Determination

CMS Pixel Detector Upgrade and Top Quark Pole Mass Determination

Author: Simon Spannagel

Publisher: Springer

Published: 2017-08-01

Total Pages: 286

ISBN-13: 331958880X

DOWNLOAD EBOOK

This thesis addresses two different topics, both vital for implementing modern high-energy physics experiments: detector development and data analysis. Providing a concise introduction to both the standard model of particle physics and the basic principles of semiconductor tracking detectors, it presents the first measurement of the top quark pole mass from the differential cross-section of tt+J events in the dileptonic tt decay channel. The first part focuses on the development and characterization of silicon pixel detectors. To account for the expected increase in luminosity of the Large Hadron Collider (LHC), the pixel detector of the compact muon solenoid (CMS) experiment is replaced by an upgraded detector with new front-end electronics. It presents comprehensive test beam studies conducted to verify the design and quantify the performance of the new front-end in terms of tracking efficiency and spatial resolution. Furthermore, it proposes a new cluster interpolation method, which utilizes the third central moment of the cluster charge distribution to improve the position resolution. The second part of the thesis introduces an alternative measurement of the top quark mass from the normalized differential production cross-sections of dileptonic top quark pair events with an additional jet. The energy measurement is 8TeV. Using theoretical predictions at next-to-leading order in perturbative Quantum Chromodynamics (QCD), the top quark pole mass is determined using a template fit method.


Fundamental Interactions - Proceedings Of The Nineteenth Lake Louise Winter Institute

Fundamental Interactions - Proceedings Of The Nineteenth Lake Louise Winter Institute

Author: Alan Astbury

Publisher: World Scientific

Published: 2005-04-21

Total Pages: 360

ISBN-13: 9814480681

DOWNLOAD EBOOK

This volume contains pedagogical lectures on particle physics, nuclear astrophysics, relativistic heavy ion interactions and gravitational waves. In addition, numerous contributions provide up-to-date information on new experimental results at colliders, underground laboratories and nuclear astrophysics. This combination of pedagogical talks and topical short talks provide a comprehensive amount of information to the researchers.


Hadron Collider Physics 2005

Hadron Collider Physics 2005

Author: Mario Campanelli

Publisher: Springer Science & Business Media

Published: 2007-08-17

Total Pages: 360

ISBN-13: 3540328416

DOWNLOAD EBOOK

This book gathers the proceedings of The Hadron Collider Physics Symposia (HCP) 2005, and reviews the state-of-the-art in the key physics directions of experimental hadron collider research. Topics include QCD physics, precision electroweak physics, c-, b-, and t-quark physics, physics beyond the Standard Model, and heavy ion physics. The present volume serves as a reference for everyone working in the field of accelerator-based high-energy physics.


Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method

Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method

Author: Alexander Grohsjean

Publisher: Springer Science & Business Media

Published: 2010-10-01

Total Pages: 155

ISBN-13: 364214070X

DOWNLOAD EBOOK

The main pacemakers of scienti?c research are curiosity, ingenuity, and a pinch of persistence. Equipped with these characteristics a young researcher will be s- cessful in pushing scienti?c discoveries. And there is still a lot to discover and to understand. In the course of understanding the origin and structure of matter it is now known that all matter is made up of six types of quarks. Each of these carry a different mass. But neither are the particular mass values understood nor is it known why elementary particles carry mass at all. One could perhaps accept some small generic mass value for every quark, but nature has decided differently. Two quarks are extremely light, three more have a somewhat typical mass value, but one quark is extremely massive. It is the top quark, the heaviest quark and even the heaviest elementary particle that we know, carrying a mass as large as the mass of three iron nuclei. Even though there exists no explanation of why different particle types carry certain masses, the internal consistency of the currently best theory—the standard model of particle physics—yields a relation between the masses of the top quark, the so-called W boson, and the yet unobserved Higgs particle. Therefore, when one assumes validity of the model, it is even possible to take precise measurements of the top quark mass to predict the mass of the Higgs (and potentially other yet unobserved) particles.