'Designed to delineate and direct attention to the increasingly influential interrelationship between science, technology and foreign policy, Skolnikoff's book succeeds as the first serious attempt to set out the significance, scope and surprising subtlety of this new interface. The book is intended to awaken the reader to its critical importance, the current incapacity of our institutions to cope with it effectively and the urgent need to do something to improve the situation. -Scientific Research.
For the first time, this book compiles original documents from Science for the People, the most important radical science movement in U.S. history. Between 1969 and 1989, Science for the People mobilized American scientists, teachers, and students to practice a socially and economically just science, rather than one that served militarism and corporate profits. Through research, writing, protest, and organizing, members sought to demystify scientific knowledge and embolden "the people" to take science and technology into their own hands. The movement's numerous publications were crucial to the formation of science and technology studies, challenging mainstream understandings of science as "neutral" and instead showing it as inherently political. Its members, some at prominent universities, became models for politically engaged science and scholarship by using their knowledge to challenge, rather than uphold, the social, political, and economic status quo. Highlighting Science for the People's activism and intellectual interventions in a range of areas -- including militarism, race, gender, medicine, agriculture, energy, and global affairs -- this volume offers vital contributions to today's debates on science, justice, democracy, sustainability, and political power.
Published to glowing praise in 1990, Science for All Americans defined the science-literate American--describing the knowledge, skills, and attitudes all students should retain from their learning experience--and offered a series of recommendations for reforming our system of education in science, mathematics, and technology. Benchmarks for Science Literacy takes this one step further. Created in close consultation with a cross-section of American teachers, administrators, and scientists, Benchmarks elaborates on the recommendations to provide guidelines for what all students should know and be able to do in science, mathematics, and technology by the end of grades 2, 5, 8, and 12. These grade levels offer reasonable checkpoints for student progress toward science literacy, but do not suggest a rigid formula for teaching. Benchmarks is not a proposed curriculum, nor is it a plan for one: it is a tool educators can use as they design curricula that fit their student's needs and meet the goals first outlined in Science for All Americans. Far from pressing for a single educational program, Project 2061 advocates a reform strategy that will lead to more curriculum diversity than is common today. IBenchmarks emerged from the work of six diverse school-district teams who were asked to rethink the K-12 curriculum and outline alternative ways of achieving science literacy for all students. These teams based their work on published research and the continuing advice of prominent educators, as well as their own teaching experience. Focusing on the understanding and interconnection of key concepts rather than rote memorization of terms and isolated facts, Benchmarks advocates building a lasting understanding of science and related fields. In a culture increasingly pervaded by science, mathematics, and technology, science literacy require habits of mind that will enable citizens to understand the world around them, make some sense of new technologies as they emerge and grow, and deal sensibly with problems that involve evidence, numbers, patterns, logical arguments, and technology--as well as the relationship of these disciplines to the arts, humanities, and vocational sciences--making science literacy relevant to all students, regardless of their career paths. If Americans are to participate in a world shaped by modern science and mathematics, a world where technological know-how will offer the keys to economic and political stability in the twenty-first century, education in these areas must become one of the nation's highest priorities. Together with Science for All Americans, Benchmarks for Science Literacy offers a bold new agenda for the future of science education in this country, one that is certain to prepare our children for life in the twenty-first century.
Science, medicine, and technology have become increasingly important to the average individual in modern society. The importance of these three fields is in many ways one of the defining characteristics of modernity. Understanding their history is essential for educated individuals. Science, medicine, and technology are not static endeavors but processes, bodies of knowledge, tools, and techniques that are constantly growing and changing. The entries in this encyclopedia explore the changing character of science, medicine, and technology in the United States; the key individuals, institutions, and organizations responsible for major developments; and the concepts, practices, and processes underlying these changes. Especially since the early decades of the twentieth century, American science, medicine, and technology have played dominant roles internationally. Entries explore distinctive characteristics of American institutions and culture that help explain this development.At the same time, the encyclopedia situates specific events, theories, practices, and institutions in their proper historical context and explores their impact on American society and culture. Entries are written by the experts in the field. Students not only from the humanities and social sciences but also from the sciences and the medical sciences should be attracted to the broad-ranging and in-depth analysis in the encyclopedia.
Toumey focuses on the ways in which the symbols of science are employed to signify scientific authority in a variety of cases, from the selling of medical products to the making of public policy about AIDS/HIV--a practice he calls "conjuring" science. It is this "conjuring" of the images and symbols of scientific authority that troubles Toumey and leads him to reflect on the history of public understanding and perceptions of science in the United States.
Within recent years fairly exhaustive studies have been made on many aspects on American Science and Technology. To make a comprehensive study of American scientific instruments and instrument makers in the American Colonies is no simple matter, partly because of an indifference to the subject in the past, and partly because of the great volume of sources that must be sifted to accomplish it.
In the decades following World War II, American scientists were celebrated for their contributions to social and technological progress. They were also widely criticized for their increasingly close ties to military and governmental power--not only by outside activists but from among the ranks of scientists themselves. Disrupting Science tells the story of how scientists formed new protest organizations that democratized science and made its pursuit more transparent. The book explores how scientists weakened their own authority even as they invented new forms of political action. Drawing extensively from archival sources and in-depth interviews, Kelly Moore examines the features of American science that made it an attractive target for protesters in the early cold war and Vietnam eras, including scientists' work in military research and activities perceived as environmentally harmful. She describes the intellectual traditions that protesters drew from--liberalism, moral individualism, and the New Left--and traces the rise and influence of scientist-led protest organizations such as Science for the People and the Union of Concerned Scientists. Moore shows how scientist protest activities disrupted basic assumptions about science and the ways scientific knowledge should be produced, and recast scientists' relationships to political and military institutions. Disrupting Science reveals how the scientific community cumulatively worked to unbind its own scientific authority and change how science and scientists are perceived. In doing so, the book redefines our understanding of social movements and the power of insider-led protest.
The national security controls that regulate access to and export of science and technology are broken. As currently structured, many of these controls undermine our national and homeland security and stifle American engagement in the global economy, and in science and technology. These unintended consequences arise from policies that were crafted for an earlier era. In the name of maintaining superiority, the U.S. now runs the risk of becoming less secure, less competitive and less prosperous. Beyond "Fortress America" provides an account of the costs associated with building walls that hamper our access to global science and technology that dampen our economic potential. The book also makes recommendations to reform the export control process, ensure scientific and technological competitiveness, and improve the non-immigrant visa system that regulates entry into the United States of foreign science and engineering students, scholars, and professionals. Beyond "Fortress America" contains vital information and action items for the President and policy makers that will affect the United States' ability to compete globally. Interested parties-including military personnel, engineers, scientists, professionals, industrialists, and scholars-will find this book a valuable tool for stemming a serious decline affecting broad areas of the nation's security and economy.