Tomita's Lectures on Observable Algebras in Hilbert Space

Tomita's Lectures on Observable Algebras in Hilbert Space

Author: Atsushi Inoue

Publisher: Springer Nature

Published: 2021-03-01

Total Pages: 197

ISBN-13: 3030688933

DOWNLOAD EBOOK

​This book is devoted to the study of Tomita's observable algebras, their structure and applications. It begins by building the foundations of the theory of T*-algebras and CT*-algebras, presenting the major results and investigating the relationship between the operator and vector representations of a CT*-algebra. It is then shown via the representation theory of locally convex*-algebras that this theory includes Tomita–Takesaki theory as a special case; every observable algebra can be regarded as an operator algebra on a Pontryagin space with codimension 1. All of the results are proved in detail and the basic theory of operator algebras on Hilbert space is summarized in an appendix. The theory of CT*-algebras has connections with many other branches of functional analysis and with quantum mechanics. The aim of this book is to make Tomita’s theory available to a wider audience, with the hope that it will be used by operator algebraists and researchers in these related fields.


Tomita-Takesaki Theory in Algebras of Unbounded Operators

Tomita-Takesaki Theory in Algebras of Unbounded Operators

Author: Atsushi Inoue

Publisher: Springer

Published: 2006-11-14

Total Pages: 249

ISBN-13: 3540494952

DOWNLOAD EBOOK

These notes are devoted to a systematic study of developing the Tomita-Takesaki theory for von Neumann algebras in unbounded operator algebras called O*-algebras and to its applications to quantum physics. The notions of standard generalized vectors and standard weights for an O*-algebra are introduced and they lead to a Tomita-Takesaki theory of modular automorphisms. The Tomita-Takesaki theory in O*-algebras is applied to quantum moment problem, quantum statistical mechanics and the Wightman quantum field theory. This will be of interest to graduate students and researchers in the field of (unbounded) operator algebras and mathematical physics.


Selected Papers of M. Ohya

Selected Papers of M. Ohya

Author: Masanori Ohya

Publisher: World Scientific

Published: 2008

Total Pages: 489

ISBN-13: 9812794190

DOWNLOAD EBOOK

This volume is a collection of articles written by Professor M Ohya over the past three decades in the areas of quantum teleportation, quantum information theory, quantum computer, etc. By compiling Ohya's important works in these areas, the book serves as a useful reference for researchers who are working in these fields.


Quantum and Non-Commutative Analysis

Quantum and Non-Commutative Analysis

Author: Huzihiro Araki

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 452

ISBN-13: 9401728232

DOWNLOAD EBOOK

In the past decade, there has been a sudden and vigorous development in a number of research areas in mathematics and mathematical physics, such as theory of operator algebras, knot theory, theory of manifolds, infinite dimensional Lie algebras and quantum groups (as a new topics), etc. on the side of mathematics, quantum field theory and statistical mechanics on the side of mathematical physics. The new development is characterized by very strong relations and interactions between different research areas which were hitherto considered as remotely related. Focussing on these new developments in mathematical physics and theory of operator algebras, the International Oji Seminar on Quantum Analysis was held at the Kansai Seminar House, Kyoto, JAPAN during June 25-29, 1992 by a generous sponsorship of the Japan Society for the Promotion of Science and the Fujihara Foundation of Science, as a workshop of relatively small number of (about 50) invited participants. This was followed by an open Symposium at RIMS, described below by its organizer, A. Kishimoto. The Oji Seminar began with two key-note addresses, one by V.F.R. Jones on Spin Models in Knot Theory and von Neumann Algebras and by A. Jaffe on Where Quantum Field Theory Has Led. Subsequently topics such as Subfactors and Sector Theory, Solvable Models of Statistical Mechanics, Quantum Field Theory, Quantum Groups, and Renormalization Group Ap proach, are discussed. Towards the end, a panel discussion on Where Should Quantum Analysis Go? was held.