Tits Buildings and the Model Theory of Groups

Tits Buildings and the Model Theory of Groups

Author: Katrin Tent

Publisher: Cambridge University Press

Published: 2002-01-03

Total Pages: 314

ISBN-13: 9780521010634

DOWNLOAD EBOOK

Introduction to buildings and their geometries with emphasis on model theoretic constructions, covering recent developments.


Buildings and Classical Groups

Buildings and Classical Groups

Author: Paul B. Garrett

Publisher: CRC Press

Published: 1997-04-01

Total Pages: 396

ISBN-13: 9780412063312

DOWNLOAD EBOOK

Buildings are highly structured, geometric objects, primarily used in the finer study of the groups that act upon them. In Buildings and Classical Groups, the author develops the basic theory of buildings and BN-pairs, with a focus on the results needed to apply it to the representation theory of p-adic groups. In particular, he addresses spherical and affine buildings, and the "spherical building at infinity" attached to an affine building. He also covers in detail many otherwise apocryphal results. Classical matrix groups play a prominent role in this study, not only as vehicles to illustrate general results but as primary objects of interest. The author introduces and completely develops terminology and results relevant to classical groups. He also emphasizes the importance of the reflection, or Coxeter groups and develops from scratch everything about reflection groups needed for this study of buildings. In addressing the more elementary spherical constructions, the background pertaining to classical groups includes basic results about quadratic forms, alternating forms, and hermitian forms on vector spaces, plus a description of parabolic subgroups as stabilizers of flags of subspaces. The text then moves on to a detailed study of the subtler, less commonly treated affine case, where the background concerns p-adic numbers, more general discrete valuation rings, and lattices in vector spaces over ultrametric fields. Buildings and Classical Groups provides essential background material for specialists in several fields, particularly mathematicians interested in automorphic forms, representation theory, p-adic groups, number theory, algebraic groups, and Lie theory. No other available source provides such a complete and detailed treatment.


Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry: Volume 1

Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry: Volume 1

Author: Raf Cluckers

Publisher: Cambridge University Press

Published: 2011-09-22

Total Pages: 347

ISBN-13: 1139499793

DOWNLOAD EBOOK

Assembles different theories of motivic integration for the first time, providing all of the necessary background for graduate students and researchers from algebraic geometry, model theory and number theory. In a rapidly-evolving area of research, this volume and Volume 2, which unite the several viewpoints and applications, will prove invaluable.


Highly Oscillatory Problems

Highly Oscillatory Problems

Author: Bjorn Engquist

Publisher: Cambridge University Press

Published: 2009-07-02

Total Pages: 254

ISBN-13: 0521134439

DOWNLOAD EBOOK

Review papers from experts in areas of active research into highly oscillatory problems, with an emphasis on computation.


Automorphic Forms and Galois Representations

Automorphic Forms and Galois Representations

Author: Fred Diamond

Publisher: Cambridge University Press

Published: 2014-10-16

Total Pages: 387

ISBN-13: 1107693632

DOWNLOAD EBOOK

Part two of a two-volume collection exploring recent developments in number theory related to automorphic forms and Galois representations.


Recent Advances in Algebraic Geometry

Recent Advances in Algebraic Geometry

Author: Christopher D. Hacon

Publisher: Cambridge University Press

Published: 2015-01-15

Total Pages: 451

ISBN-13: 110764755X

DOWNLOAD EBOOK

A comprehensive collection of expository articles on cutting-edge topics at the forefront of research in algebraic geometry.


Moduli Spaces

Moduli Spaces

Author: Leticia Brambila

Publisher: Cambridge University Press

Published: 2014-03-13

Total Pages: 347

ISBN-13: 1107636388

DOWNLOAD EBOOK

A graduate-level introduction to some of the important contemporary ideas and problems in the theory of moduli spaces.