Introduction -- Literature search -- Evaluation of alternative test methods -- Evaluation of OBSI Test Parameters -- Demonstration Testing of OBSI Procedure -- Conclusions, recommendations and suggested research -- References -- Attachment -- Appendices.
Automotive Tire Noise and Vibrations: Analysis, Measurement and Simulation presents the latest generation mechanisms of tire/road noise. The book focuses not only on tire/road noise issues from the tire/road structures, materials and dynamics, but also from a whole vehicle system. The analyses cover finite element modeling, mathematical simulations and experimental tests, including works done to mitigate noise. This book provides a summary of tire noise and vibration research, with a focus on new simulation and measurement techniques. Covers new measurements techniques and simulation strategies that are critical in accurately assessing tire noise and vibration Provides recent simulation progress and findings of CAE on analysis of generation mechanisms of the tire/road noise Features a Statistical Energy Analysis (SEA) and model of a multilayer trim to enhance the sound absorption of tire/road noise
Functional Pavement Design is a collections of 186 papers from 27 different countries, which were presented at the 4th Chinese-European Workshops (CEW) on Functional Pavement Design (Delft, the Netherlands, 29 June-1 July 2016). The focus of the CEW series is on field tests, laboratory test methods and advanced analysis techniques, and cover analysis, material development and production, experimental characterization, design and construction of pavements. The main areas covered by the book include: - Flexible pavements - Pavement and bitumen - Pavement performance and LCCA - Pavement structures - Pavements and environment - Pavements and innovation - Rigid pavements - Safety - Traffic engineering Functional Pavement Design is for contributing to the establishment of a new generation of pavement design methodologies in which rational mechanics principles, advanced constitutive models and advanced material characterization techniques shall constitute the backbone of the design process. The book will be much of interest to professionals and academics in pavement engineering and related disciplines.
"TRB's National Cooperative Highway Research Program (NCHRP) Report 738: Evaluating Pavement Strategies and Barriers for Noise Mitigation presents a methodology for evaluating feasibility, reasonableness, effectiveness, acoustic longevity, and economic features of pavement strategies and barriers for noise mitigation. The methodology uses a life-cycle cost analysis to examine the economic features of mitigation alternatives, the FHWA Traffic Noise Model to integrate the noise reduction performance of pavements and barriers, and on-board sound intensity measurements as an input to the prediction model. The appendixes contained in the research agency's final report provide elaborations and detail on several aspects of the research. The appendixes are not included with the print version of the report, but are available online." --Publisher description.
"This report will be of interest to state DOT pavement engineers, environmental specialists, and noise analysts. The relationship between pavement surface texture and highway traffic noise is discussed. Information for the synthesis was collected by surveying state transportation agencies and by conducting a literature search of both domestic and foreign publications."--Avant-propos.
Vehicle/Tire/Road Dynamics: Handling, Ride, and NVH presents the connection between NVH and conventional vehicle dynamics where both tire and road play a key role. In this book, there is a chapter for handling dynamics that provides an introduction to ride dynamics and a chapter for ride dynamics that provides an introduction to NVH, presenting better coherence and synergy between these major areas of vehicle/tire dynamics. Accompanying the fundamental theories, case studies are given to facilitate comprehension. In addition to the experimental implementations, the state-of-the-art approaches to simulating vehicle/tire dynamics are presented from the viewpoint of both industry and academia. This new book bridges the gap for experts in tire or pavement NVH (also tire-pavement interaction noise) and those who are experts in vehicle dynamics. Conventional vehicle dynamics (e.g., handling/braking/cornering) is focused on low-frequency performance while NVH (noise/vibration/harshness) is focused on high-frequency performance. There is also another area called "ride" (comfort/stability) which focuses on mid-frequency. Presents a closed loop system for vehicle dynamics, covering handling, riden and NVH. Provides insights into how intelligent tires will enhance autonomous vehicle control and optimize multiple performances, especially for electric vehicles. Demonstrates how pavement characteristics could greatly influence vehicle handling/ride/NVH and improve/balance these performances.