Time-Varying Sliding Modes for Second and Third Order Systems

Time-Varying Sliding Modes for Second and Third Order Systems

Author: Andrzej Bartoszewicz

Publisher: Springer Science & Business Media

Published: 2009-04-03

Total Pages: 200

ISBN-13: 3540922164

DOWNLOAD EBOOK

A principal objective of control engineering is to design control systems which are robust with respect to external disturbances and modelling uncertainty. This objective may be well achieved using the sliding mode technique - which is the main subject of this monograph. More precisely, “Time-Varying Sliding Modes for Second and Third Order Systems” focuses on only one, but very important aspect of the sliding mode system design, i.e. the problem of the sliding plane selection. In this self-contained monograph, the main notions and concepts used in the field of variable structure systems and sliding mode control are presented before in the main part the issue of the switching surface design is discussed. This is done by considering two standard plants, which are very often encountered in the control engineering practice: the second and the third order nonlinear and possibly time-varying systems.


Advanced, Contemporary Control

Advanced, Contemporary Control

Author: Andrzej Bartoszewicz

Publisher: Springer Nature

Published: 2020-06-24

Total Pages: 1560

ISBN-13: 3030509362

DOWNLOAD EBOOK

This book presents the proceedings of the 20th Polish Control Conference. A triennial event that was first held in 1958, the conference successfully combines its long tradition with a modern approach to shed light on problems in control engineering, automation, robotics and a wide range of applications in these disciplines. The book presents new theoretical results concerning the steering of dynamical systems, as well as industrial case studies and worked solutions to real-world problems in contemporary engineering. It particularly focuses on the modelling, identification, analysis and design of automation systems; however, it also addresses the evaluation of their performance, efficiency and reliability. Other topics include fault-tolerant control in robotics, automated manufacturing, mechatronics and industrial systems. Moreover, it discusses data processing and transfer issues, covering a variety of methodologies, including model predictive, robust and adaptive techniques, as well as algebraic and geometric methods, and fractional order calculus approaches. The book also examines essential application areas, such as transportation and autonomous intelligent vehicle systems, robotic arms, mobile manipulators, cyber-physical systems, electric drives and both surface and underwater marine vessels. Lastly, it explores biological and medical applications of the control-theory-inspired methods.


Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques

Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques

Author: Roman Szewczyk

Publisher: Springer Nature

Published: 2021-04-29

Total Pages: 442

ISBN-13: 3030748936

DOWNLOAD EBOOK

This book contains 38 papers authored by both scientists and practitioners focused on an interdisciplinary approach to the development of cyber-physical systems. Recently our civilization has been facing one of the most severe challenges in modern history. The COVID-19 pandemic devastated the global economy and significantly disrupted numerous areas of economic activity. Only radical increase of efficiency and versatility of industrial production, with further limitation of human involvement, paralleled by the decrease of environmental burden, will enable us to cope with such challenges. We hope that the presented book provides input to the solution of at least some problems brought about by this challenge. This approach relies on the development of measuring techniques, robotic and mechatronic systems, industrial automation, numerical modeling and simulation as well as application of artificial intelligence techniques required by the transformation leading to Industry 4.0.


Automation 2020: Towards Industry of the Future

Automation 2020: Towards Industry of the Future

Author: Roman Szewczyk

Publisher: Springer Nature

Published: 2020-02-27

Total Pages: 397

ISBN-13: 3030409716

DOWNLOAD EBOOK

This book presents the scientific outcomes of the International Conference AUTOMATION 2020, held on March 18–20, 2020 in Warsaw, Poland. The next 30 years will see radical innovations in production processes, transportation management and social life. The changes brought about by the transformation to zero-emission industry require advances in many fields, but especially in industrial automation, robotics and measurement techniques associated with the cyber-physical systems employing artificial intelligence that will be key to reducing costs and enabling European society to maintain its quality of live. In this context, the book features the latest research toward further developing these fields of engineering, and also offers solutions and guidelines that are useful for both researchers and engineers addressing problems associated with the world of ongoing radical changes.


Frequency-Shaped and Observer-Based Discrete-time Sliding Mode Control

Frequency-Shaped and Observer-Based Discrete-time Sliding Mode Control

Author: Axaykumar Mehta

Publisher: Springer

Published: 2015-01-05

Total Pages: 108

ISBN-13: 8132222385

DOWNLOAD EBOOK

It is well established that the sliding mode control strategy provides an effective and robust method of controlling the deterministic system due to its well-known invariance property to a class of bounded disturbance and parameter variations. Advances in microcomputer technologies have made digital control increasingly popular among the researchers worldwide. And that led to the study of discrete-time sliding mode control design and its implementation. This brief presents, a method for multi-rate frequency shaped sliding mode controller design based on switching and non-switching type of reaching law. In this approach, the frequency dependent compensator dynamics are introduced through a frequency-shaped sliding surface by assigning frequency dependent weighing matrices in a linear quadratic regulator (LQR) design procedure. In this way, the undesired high frequency dynamics or certain frequency disturbance can be eliminated. The states are implicitly obtained by measuring the output at a faster rate than the control. It is also known that the vibration control of smart structure is a challenging problem as it has several vibratory modes. So, the frequency shaping approach is used to suppress the frequency dynamics excited during sliding mode in smart structure. The frequency content of the optimal sliding mode is shaped by using a frequency dependent compensator, such that a higher gain can be obtained at the resonance frequencies. The brief discusses the design methods of the controllers based on the proposed approach for the vibration suppression of the intelligent structure. The brief also presents a design of discrete-time reduced order observer using the duality to discrete-time sliding surface design. First, the duality between the coefficients of the discrete-time reduced order observer and the sliding surface design is established and then, the design method for the observer using Riccati equation is explained. Using the proposed method, the observer for the Power System Stabilizer (PSS) for Single Machine Infinite Bus (SMIB) system is designed and the simulation is carried out using the observed states. The discrete-time sliding mode controller based on the proposed reduced order observer design method is also obtained for a laboratory experimental servo system and verified with the experimental results.


Sliding Modes after the first Decade of the 21st Century

Sliding Modes after the first Decade of the 21st Century

Author: Leonid Fridman

Publisher: Springer

Published: 2011-09-28

Total Pages: 604

ISBN-13: 3642221645

DOWNLOAD EBOOK

The book presents the newest results of the major world research groups working in the area of Variable Structure Systems and Sliding Mode Control (VSS/SMC). The research activity of these groups is coordinated by the IEEE Technical Committee on Variable Structure Systems (VSS) and Sliding Modes (SM). The presented results include the reports of the research groups collaborating in a framework of the Unión European Union – México project of Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICyT) 93302 titled "Automatization and Monitoring of Energy Production Processes via Sliding Mode Control". The book starts with the overview of the sliding mode control concepts and algorithms that were developed and discussed in the last two decades The research papers are combined in three sections: Part I: VSS and SM Algorithms and their Analysis Part II: SMC Design Part III: Applications of VSS and SMC The book will be of interests of engineers, researchers and graduate students working in the area of the control systems design. Novel mathematical theories and engineering concepts of control systems are rigorously discussed and supported by numerous applications to practical tasks.


Sliding Mode Control

Sliding Mode Control

Author: Andrzej Bartoszewicz

Publisher: BoD – Books on Demand

Published: 2011-04-11

Total Pages: 560

ISBN-13: 9533071621

DOWNLOAD EBOOK

The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area.


Sliding Mode Control Using Novel Sliding Surfaces

Sliding Mode Control Using Novel Sliding Surfaces

Author: B. Bandyopadhyay

Publisher: Springer

Published: 2009-10-14

Total Pages: 147

ISBN-13: 3642034489

DOWNLOAD EBOOK

AfterasurveypaperbyUtkininthelate1970s,slidingmodecontrolmeth- ologies emerged as an e?ective tool to tackle uncertainty and disturbances which are inevitable in most of the practical systems. Sliding mode control is a particular class of variable structure control which was introduced by Emel’yanov and his colleagues. The design paradigms of sliding mode c- trol has now become a mature design technique for the design of robust c- troller of uncertain system. In sliding mode technique, the state trajectory of the system is constrained on a chosen manifold (or within some neighb- hood thereof) by an appropriatecontrolaction. This manifold is also called a switching surface or a sliding surface. During sliding mode, system dynamics is governed by the chosen manifold which results in a well celebrated inva- ance property towards certain classes of disturbance and model mismatches. The purpose of this monograph is to give a di?erent dimension to sl- ing surface design to achieve high performance of the system. Design of the switching surface is vital because the closed loop dynamics is governed by the parameters of the sliding surface. Therefore sliding surface should be - signed to meet the closed loop speci?cations. Many systems demand high performance with robustness. To address this issue of achieving high perf- mance with robustness, we propose nonlinear surfaces for di?erent classes of systems. The nonlinear surface is designed such that it changes the system’s closed-loop damping ratio from its initial low value to a ?nal high value.


Congestion Control in Data Transmission Networks

Congestion Control in Data Transmission Networks

Author: Przemysław Ignaciuk

Publisher: Springer Science & Business Media

Published: 2012-08-01

Total Pages: 391

ISBN-13: 1447141474

DOWNLOAD EBOOK

Congestion Control in Data Transmission Networks details the modeling and control of data traffic in communication networks. It shows how various networking phenomena can be represented in a consistent mathematical framework suitable for rigorous formal analysis. The monograph differentiates between fluid-flow continuous-time traffic models, discrete-time processes with constant sampling rates, and sampled-data systems with variable discretization periods. The authors address a number of difficult real-life problems, such as: optimal control of flows with disparate, time-varying delay; the existence of source and channel nonlinearities; the balancing of quality of service and fairness requirements; and the incorporation of variable rate allocation policies. Appropriate control mechanisms which can handle congestion and guarantee high throughput in various traffic scenarios (with different networking phenomena being considered) are proposed. Systematic design procedures using sound control-theoretic foundations are adopted. Since robustness issues are of major concern in providing efficient data-flow regulation in today’s networks, sliding-mode control is selected as the principal technique to be applied in creating the control solutions. The controller derivation is given extensive analytical treatment and is supported with numerous realistic simulations. A comparison with existing solutions is also provided. The concepts applied are discussed in a number of illustrative examples, and supported by many figures, tables, and graphs walking the reader through the ideas and introducing their relevance in real networks. Academic researchers and graduate students working in computer networks and telecommunications and in control (especially time-delay systems and discrete-time optimal and sliding-mode control) will find this text a valuable assistance in ensuring smooth data-flow within communications networks.


Advances in Sliding Mode Control

Advances in Sliding Mode Control

Author: B Bandyopadhyay

Publisher: Springer

Published: 2013-03-15

Total Pages: 388

ISBN-13: 3642369863

DOWNLOAD EBOOK

The sliding mode control paradigm has become a mature technique for the design of robust controllers for a wide class of systems including nonlinear, uncertain and time-delayed systems. This book is a collection of plenary and invited talks delivered at the 12th IEEE International Workshop on Variable Structure System held at the Indian Institute of Technology, Mumbai, India in January 2012. After the workshop, these researchers were invited to develop book chapters for this edited collection in order to reflect the latest results and open research questions in the area. The contributed chapters have been organized by the editors to reflect the various themes of sliding mode control which are the current areas of theoretical research and applications focus; namely articulation of the fundamental underpinning theory of the sliding mode design paradigm, sliding modes for decentralized system representations, control of time-delay systems, the higher order sliding mode concept, results applicable to nonlinear and underactuated systems, sliding mode observers, discrete sliding mode control together with cutting edge research contributions in the application of the sliding mode concept to real world problems. This book provides the reader with a clear and complete picture of the current trends in Variable Structure Systems and Sliding Mode Control Theory.