Progress of Time-Dependent Nuclear Reaction Theory

Progress of Time-Dependent Nuclear Reaction Theory

Author: Yoritaka Iwata

Publisher: Bentham Science Publishers

Published: 2019-07-03

Total Pages: 312

ISBN-13: 1681087650

DOWNLOAD EBOOK

This book is a compilation of the latest theoretical methods for treating models in nuclear reactions. Initial chapters in this volume explain different aspects of time-dependent nuclear density functional theory, such as numerical calculations, density constrained models, multinucleon transfer reactions, and superfluid time dependent density functional theory. In addition, the volume also presents chapters covering other topics in nuclear physics, such as quantum molecular dynamics, cluster models in stable and unstable nuclei, chain structure theory in light nuclei, many-body systems and more. The volume is intended as a guidebook for graduate students and researchers to understand recent theories used in applied nuclear particle physics and astrology.


Time-Dependent Density-Functional Theory

Time-Dependent Density-Functional Theory

Author: Carsten Ullrich

Publisher: Oxford University Press

Published: 2012

Total Pages: 541

ISBN-13: 0199563020

DOWNLOAD EBOOK

Time-dependent density-functional theory (TDDFT) is a quantum mechanical approach for the dynamical properties of electrons in matter. It's widely used in (bio)chemistry and physics to calculate molecular excitation energies and optical properties of materials. This is the first graduate-level text on the formal framework and applications of TDDFT.


Nuclear Collective Motion

Nuclear Collective Motion

Author: David J. Rowe

Publisher: World Scientific

Published: 2010

Total Pages: 373

ISBN-13: 9812790640

DOWNLOAD EBOOK

The two most important developments in nuclear physics were the shell model and the collective model. The former gives the formal framework for a description of nuclei in terms of interacting neutrons and protons. The latter provides a very physical but phenomenological framework for interpreting the observed properties of nuclei. A third approach, based on variational and mean-field methods, brings these two perspectives together in terms of the so-called unified models. Together, these three approaches provide the foundations on which nuclear physics is based. They need to be understood by everyone practicing or teaching nuclear physics, and all those who wish to gain an understanding of the foundations of the models and their relationships to microscopic theory as given by recent developments in terms of dynamical symmetries. This book provides a simple presentation of the models and theory of nuclear collective structure, with an emphasis on the physical content and the ways they are used to interpret data. Part 1 presents the basic phenomenological collective vibrational and rotational models as introduced by Bohr and Mottelson and their many colleagues. It also describes the extensions of these models to parallel unified models in which neutrons and protons move in a mean-field with collective degrees of freedom. Part 2 presents the predominant theories used to describe the collective properties of nuclei in terms of interacting nucleons. These theories, which are shared with other many-body systems, are shown to emerge naturally from the unified models of Part 1.


Quantum Chemistry and Dynamics of Excited States

Quantum Chemistry and Dynamics of Excited States

Author: Leticia González

Publisher: John Wiley & Sons

Published: 2021-02-01

Total Pages: 52

ISBN-13: 1119417759

DOWNLOAD EBOOK

An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.