Traditional wisdom suggests that when it comes to construction projects, any effort that might be made to shorten the planned schedule will necessarily lead to increased costs. In Time-Cost Optimization of Building Projects, however, author Uzair Waheed, B.E., PMP shows that it might just be possible, under certain conditions, to actually decrease both time and cost for building projects.
Traditional wisdom suggests that when it comes to construction projects, any effort that might be made to shorten the planned schedule will necessarily lead to increased costs. In Time-Cost Optimization of Building Projects, however, author Uzair Waheed, B.E., PMP shows that it might just be possible, under certain conditions, to actually decrease both time and cost for building projects. After examining the existing research on the relationship between time and cost in construction projects, the author provides an overview of the project management process and examines the various stagesincluding initiation, planning, execution, monitoring and control, and closingthat managers and engineers need to consider as they embark upon a new building project.
This book provides a broad overview of project and project management principles, processes, and success/failure factors. It also provides a state of the art of applications of the project management concepts, especially in the field of construction projects, based on the Project Management Body of Knowledge (PMBOK). The slate of geographically and professionally diverse authors illustrates project management as a multidisciplinary undertaking that integrates renewable and non-renewable resources in a systematic process to achieve project goals. The book describes assessment based on technical and operational goals and meeting schedules and budgets.
This book comprises select peer-reviewed proceedings of the International Conference on Recent Developments in Sustainable Infrastructure (ICRDSI) 2019. The topics span over all major disciplines of civil engineering with regard to sustainable development of infrastructure and innovation in construction materials, especially concrete. The book covers numerical and analytical studies on various topics such as composite and sandwiched structures, green building, groundwater modeling, rainwater harvesting, soil dynamics, seismic resistance and control of structures, waste management, structural health monitoring, and geo-environmental engineering. This book will be useful for students, researchers and professionals working in sustainable technologies in civil engineering.
At the heart of the optimization domain are mathematical modeling of the problem and the solution methodologies. The problems are becoming larger and with growing complexity. Such problems are becoming cumbersome when handled by traditional optimization methods. This has motivated researchers to resort to artificial intelligence (AI)-based, nature-inspired solution methodologies or algorithms. The Handbook of AI-based Metaheuristics provides a wide-ranging reference to the theoretical and mathematical formulations of metaheuristics, including bio-inspired, swarm-based, socio-cultural, and physics-based methods or algorithms; their testing and validation, along with detailed illustrative solutions and applications; and newly devised metaheuristic algorithms. This will be a valuable reference for researchers in industry and academia, as well as for all Master’s and PhD students working in the metaheuristics and applications domains.
This book describes new methods for building intelligent systems using type-2 fuzzy logic and soft computing (SC) techniques. The authors extend the use of fuzzy logic to a higher order, which is called type-2 fuzzy logic. Combining type-2 fuzzy logic with traditional SC techniques, we can build powerful hybrid intelligent systems that can use the advantages that each technique offers. This book is intended to be a major reference tool and can be used as a textbook.
Exploring complex and intelligent analytical and mathematical methods, this book examines how different approaches can be used to optimize program management in the construction industry. It presents an in-depth study of the different program management methods, ranging from simple decision-making techniques and statistics analysis to the more complex linear programming and demonstrates how knowledge-base systems and genetic algorithms can be used to optimize resources and meet time, budget and quality criteria. It addresses topics including decision-making principles, planning and scheduling, mathematical forecasting models, optimization techniques programming and artificial intelligence techniques. Providing a valuable resource for anyone managing multiple projects in the construction industry, this book is intended for civil and construction engineering students, project managers, construction managers and senior engineers.
Construction Scheduling, Cost Optimization and Management presents a general mathematical formula for the scheduling of construction projects. Using this formula, repetitive and non-repetitive tasks, work continuity considerations, multiple-crew strategies, and the effects of varying job conditions on the performance of a crew can be modelled.L This book presents an entirely new approach to the construction scheduling problem. It provides a practical methodology which will be of great benefit to all those involved in construction scheduling and cost optimization, including construction engineers, highway engineers, transportation engineers, contractors and architects. It will also be useful for researchers, and graduates on courses in construction scheduling and planning.
This book gathers the latest advances, innovations, and applications in the field of information technology in civil and building engineering, presented at the 18th International Conference on Computing in Civil and Building Engineering (ICCCBE), São Paulo, Brazil, August 18-20, 2020. It covers highly diverse topics such as BIM, construction information modeling, knowledge management, GIS, GPS, laser scanning, sensors, monitoring, VR/AR, computer-aided construction, product and process modeling, big data and IoT, cooperative design, mobile computing, simulation, structural health monitoring, computer-aided structural control and analysis, ICT in geotechnical engineering, computational mechanics, asset management, maintenance, urban planning, facility management, and smart cities. Written by leading researchers and engineers, and selected by means of a rigorous international peer-review process, the contributions highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.