Three Lectures on Commutative Algebra

Three Lectures on Commutative Algebra

Author: Holger Brenner

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 202

ISBN-13: 0821844342

DOWNLOAD EBOOK

These lectures provides detailed introductions to some of the latest advances in three significant areas of rapid development in commutative algebra and its applications: tight closure and vector bundles; combinatorics and commutative algebra; constructive desingularization."


Six Lectures on Commutative Algebra

Six Lectures on Commutative Algebra

Author: J. Elias

Publisher: Springer Science & Business Media

Published: 2010-03-17

Total Pages: 402

ISBN-13: 3034603290

DOWNLOAD EBOOK

Interest in commutative algebra has surged over the past decades. In order to survey and highlight recent developments in this rapidly expanding field, the Centre de Recerca Matematica in Bellaterra organized a ten-days Summer School on Commutative Algebra in 1996. Lectures were presented by six high-level specialists, L. Avramov (Purdue), M.K. Green (UCLA), C. Huneke (Purdue), P. Schenzel (Halle), G. Valla (Genova) and W.V. Vasconcelos (Rutgers), providing a fresh and extensive account of the results, techniques and problems of some of the most active areas of research. The present volume is a synthesis of the lectures given by these authors. Research workers as well as graduate students in commutative algebra and nearby areas will find a useful overview of the field and recent developments in it. Reviews "All six articles are at a very high level; they provide a thorough survey of results and methods in their subject areas, illustrated with algebraic or geometric examples." - Acta Scientiarum Mathematicarum Avramov lecture: "... it contains all the major results [on infinite free resolutions], it explains carefully all the different techniques that apply, it provides complete proofs (...). This will be extremely helpful for the novice as well as the experienced." - Mathematical reviews Huneke lecture: "The topic is tight closure, a theory developed by M. Hochster and the author which has in a short time proved to be a useful and powerful tool. (...) The paper is extremely well organized, written, and motivated." - Zentralblatt MATH Schenzel lecture: "... this paper is an excellent introduction to applications of local cohomology." - Zentralblatt MATH Valla lecture: "... since he is an acknowledged expert on Hilbert functions and since his interest has been so broad, he has done a superb job in giving the readers a lively picture of the theory." - Mathematical reviews Vasconcelos lecture: "This is a very useful survey on invariants of modules over noetherian rings, relations between them, and how to compute them." - Zentralblatt MATH


Introduction To Commutative Algebra

Introduction To Commutative Algebra

Author: Michael F. Atiyah

Publisher: CRC Press

Published: 2018-03-09

Total Pages: 140

ISBN-13: 0429973268

DOWNLOAD EBOOK

First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.


Commutative Algebra

Commutative Algebra

Author: Marco Fontana

Publisher: Springer Science & Business Media

Published: 2010-09-29

Total Pages: 491

ISBN-13: 144196990X

DOWNLOAD EBOOK

Commutative algebra is a rapidly growing subject that is developing in many different directions. This volume presents several of the most recent results from various areas related to both Noetherian and non-Noetherian commutative algebra. This volume contains a collection of invited survey articles by some of the leading experts in the field. The authors of these chapters have been carefully selected for their important contributions to an area of commutative-algebraic research. Some topics presented in the volume include: generalizations of cyclic modules, zero divisor graphs, class semigroups, forcing algebras, syzygy bundles, tight closure, Gorenstein dimensions, tensor products of algebras over fields, as well as many others. This book is intended for researchers and graduate students interested in studying the many topics related to commutative algebra.


Commutative Algebra and Noncommutative Algebraic Geometry

Commutative Algebra and Noncommutative Algebraic Geometry

Author: David Eisenbud

Publisher: Cambridge University Press

Published: 2015-11-19

Total Pages: 463

ISBN-13: 1107065623

DOWNLOAD EBOOK

This book surveys fundamental current topics in these two areas of research, emphasising the lively interaction between them. Volume 1 contains expository papers ideal for those entering the field.


Progress in Commutative Algebra 2

Progress in Commutative Algebra 2

Author: Christopher Francisco

Publisher: Walter de Gruyter

Published: 2012-04-26

Total Pages: 329

ISBN-13: 311027860X

DOWNLOAD EBOOK

This is the second of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry). This volume contains surveys on aspects of closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a nice guide to closure operations by Epstein, but also contains an article on test ideals by Schwede and Tucker and one by Enescu which discusses the action of the Frobenius on finite dimensional vector spaces both of which are related to tight closure. Finiteness properties of rings and modules or the lack of them come up in all aspects of commutative algebra. However, in the study of non-noetherian rings it is much easier to find a ring having a finite number of prime ideals. The editors have included papers by Boynton and Sather-Wagstaff and by Watkins that discuss the relationship of rings with finite Krull dimension and their finite extensions. Finiteness properties in commutative group rings are discussed in Glaz and Schwarz's paper. And Olberding's selection presents us with constructions that produce rings whose integral closure in their field of fractions is not finitely generated. The final three papers in this volume investigate factorization in a broad sense. The first paper by Celikbas and Eubanks-Turner discusses the partially ordered set of prime ideals of the projective line over the integers. The editors have also included a paper on zero divisor graphs by Coykendall, Sather-Wagstaff, Sheppardson and Spiroff. The final paper, by Chapman and Krause, concerns non-unique factorization.


Commutative Algebra

Commutative Algebra

Author: R. Y. Sharp

Publisher: Cambridge University Press

Published: 1982

Total Pages: 265

ISBN-13: 0521271258

DOWNLOAD EBOOK

This book is concerned with the research conducted in the late 1970s and early 1980s in the theory of commutative Neotherian rings. It consists of articles by invited speakers at the Symposium of Commutative Algebra held at the University of Durham in July 1981; these articles are all based on lectures delivered at the Symposium. The purpose of this book is to provide a record of at least some aspects of the Symposium, which several of the world leaders in the field attended. Several articles are included which provide surveys, incorporating historical perspective, details of progress made and indications of possible future lines of investigation. The book will be of interest to scholars of commutative and local algebra.


Commutative Algebra and Its Connections to Geometry

Commutative Algebra and Its Connections to Geometry

Author: Alberto Corso

Publisher: American Mathematical Soc.

Published: 2011-10-20

Total Pages: 233

ISBN-13: 082184959X

DOWNLOAD EBOOK

This volume contains papers based on presentations given at the Pan-American Advanced Studies Institute (PASI) on commutative algebra and its connections to geometry, which was held August 3-14, 2009, at the Universidade Federal de Pernambuco in Olinda, Brazil. The main goal of the program was to detail recent developments in commutative algebra and interactions with such areas as algebraic geometry, combinatorics and computer algebra. The articles in this volume concentrate on topics central to modern commutative algebra: the homological conjectures, problems in positive and mixed characteristic, tight closure and its interaction with birational geometry, integral dependence and blowup algebras, equisingularity theory, Hilbert functions and multiplicities, combinatorial commutative algebra, Grobner bases and computational algebra.


Undergraduate Commutative Algebra

Undergraduate Commutative Algebra

Author: Miles Reid

Publisher: Cambridge University Press

Published: 1995-11-30

Total Pages: 172

ISBN-13: 9780521458894

DOWNLOAD EBOOK

Commutative algebra is at the crossroads of algebra, number theory and algebraic geometry. This textbook is affordable and clearly illustrated, and is intended for advanced undergraduate or beginning graduate students with some previous experience of rings and fields. Alongside standard algebraic notions such as generators of modules and the ascending chain condition, the book develops in detail the geometric view of a commutative ring as the ring of functions on a space. The starting point is the Nullstellensatz, which provides a close link between the geometry of a variety V and the algebra of its coordinate ring A=k[V]; however, many of the geometric ideas arising from varieties apply also to fairly general rings. The final chapter relates the material of the book to more advanced topics in commutative algebra and algebraic geometry. It includes an account of some famous 'pathological' examples of Akizuki and Nagata, and a brief but thought-provoking essay on the changing position of abstract algebra in today's world.


Abelian Varieties and Number Theory

Abelian Varieties and Number Theory

Author: Moshe Jarden

Publisher: American Mathematical Soc.

Published: 2021-05-03

Total Pages: 200

ISBN-13: 1470452073

DOWNLOAD EBOOK

This book is a collection of articles on Abelian varieties and number theory dedicated to Gerhard Frey's 75th birthday. It contains original articles by experts in the area of arithmetic and algebraic geometry. The articles cover topics on Abelian varieties and finitely generated Galois groups, ranks of Abelian varieties and Mordell-Lang conjecture, Tate-Shafarevich group and isogeny volcanoes, endomorphisms of superelliptic Jacobians, obstructions to local-global principles over semi-global fields, Drinfeld modular varieties, representations of etale fundamental groups and specialization of algebraic cycles, Deuring's theory of constant reductions, etc. The book will be a valuable resource to graduate students and experts working on Abelian varieties and related areas.