3D Printing of Optical Components

3D Printing of Optical Components

Author: Andreas Heinrich

Publisher: Springer Nature

Published: 2020-11-21

Total Pages: 307

ISBN-13: 3030589609

DOWNLOAD EBOOK

This edited volume reviews the current state of the art in the additive manufacturing of optical componentry, exploring key principles, materials, processes and applications. A short introduction lets readers familiarize themselves with the fundamental principles of the 3D printing method. This is followed by a chapter on commonly-used and emerging materials for printing of optical components, and subsequent chapters are dedicated to specific topics and case studies. The high potential of additive manufactured optical components is presented based on different manufacturing techniques and accompanied with extensive examples – from nanooptics to large scale optics – and taking research and industrial perspectives. Readers are provided with an extensive overview of the new possibilities brought about by this alternative method for optical components manufacture. Finally, the limitations of the method with respect to manufacturing techniques, materials and optical properties of the generated objects are discussed. With contributions from experts in academia and industry, this work will appeal to a wide readership, from undergraduate students through engineers to researchers interested in modern methods of manufacturing optical components.


3D Printing for Energy Applications

3D Printing for Energy Applications

Author: Albert Tarancón

Publisher: John Wiley & Sons

Published: 2021-03-03

Total Pages: 400

ISBN-13: 1119560764

DOWNLOAD EBOOK

3D PRINTING FOR ENERGY APPLICATIONS Explore current and future perspectives of 3D printing for the fabrication of high value-added complex devices 3D Printing for Energy Applications delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the technology of printable materials and 3D printing strategies itself, and its use in energy devices or systems. Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices. Readers will also benefit from the inclusion of: A thorough introduction to 3D printing of functional materials, including metals, ceramics, and composites An exploration of 3D printing challenges for production of complex objects, including computational design, multimaterials, tailoring AM components, and volumetric additive manufacturing Practical discussions of 3D printing of energy devices, including batteries, supercaps, solar panels, fuel cells, turbomachinery, thermoelectrics, and CCUS Perfect for materials scientists, 3D Printing for Energy Applications will also earn a place in the libraries of graduate students in engineering, chemistry, and material sciences seeking a one-stop reference for current and future perspectives on 3D printing of high value-added complex devices.


3D Printed Microfluidic Devices

3D Printed Microfluidic Devices

Author: Savas Tasoglu

Publisher: MDPI

Published: 2019-01-10

Total Pages: 213

ISBN-13: 3038974676

DOWNLOAD EBOOK

This book is a printed edition of the Special Issue "3D Printed Microfluidic Devices" that was published in Micromachines


Lasers in 3D Printing and Manufacturing

Lasers in 3D Printing and Manufacturing

Author: Chee Kai Chua

Publisher: World Scientific Publishing Company

Published: 2016-05-31

Total Pages: 0

ISBN-13: 9789814656429

DOWNLOAD EBOOK

This book covers the basics of lasers, optics and materials used for manufacturing and 3D printing. It includes several case studies for readers to apply their understanding of the topics, provide sufficient theoretical background and insights to today's key laser-assisted AM processes and conclude with the future prospects of this exciting technology.


Fabricated

Fabricated

Author: Hod Lipson

Publisher: John Wiley & Sons

Published: 2013-01-22

Total Pages: 302

ISBN-13: 1118416945

DOWNLOAD EBOOK

Fabricated tells the story of 3D printers, humble manufacturing machines that are bursting out of the factory and into schools, kitchens, hospitals, even onto the fashion catwalk. Fabricated describes our emerging world of printable products, where people design and 3D print their own creations as easily as they edit an online document. A 3D printer transforms digital information into a physical object by carrying out instructions from an electronic design file, or 'blueprint.' Guided by a design file, a 3D printer lays down layer after layer of a raw material to 'print' out an object. That's not the whole story, however. The magic happens when you plug a 3D printer into today’s mind-boggling digital technologies. Add to that the Internet, tiny, low cost electronic circuitry, radical advances in materials science and biotech and voila! The result is an explosion of technological and social innovation. Fabricated takes the reader onto a rich and fulfilling journey that explores how 3D printing is poised to impact nearly every part of our lives. Aimed at people who enjoy books on business strategy, popular science and novel technology, Fabricated will provide readers with practical and imaginative insights to the question 'how will this technology change my life?' Based on hundreds of hours of research and dozens of interviews with experts from a broad range of industries, Fabricated offers readers an informative, engaging and fast-paced introduction to 3D printing now and in the future.


Microlens Arrays

Microlens Arrays

Author: Dan Daly

Publisher: CRC Press

Published: 2000-11-23

Total Pages: 262

ISBN-13: 9780748408931

DOWNLOAD EBOOK

The general trend towards miniaturisation and parallelism in optics and electro-optics has led to a requirement for arrays of sub-millimetre sized lenses. Thus, the demand for these microlens arrays has increased dramatically over recent years. Dan Daly's book describes the technology of microlens arrays and provides a recipe for producing them. It surveys the many fabrication techniques and discusses the numerous applications which either require or enhanced by the use of microlens arrays. This book gives a full description of the processes involved in production and limitations of the techniques. Processes looked at include the Thermal Reflow of Photoresist technique and the Silicon Elastomer Replication Process. As the measurement of microlenses is an intrinsic part of the production process, the methods which can be used to evaluate lens performance are explained.


3D Printing in Chemical Sciences

3D Printing in Chemical Sciences

Author: Vipul Gupta

Publisher: Royal Society of Chemistry

Published: 2019-03-20

Total Pages: 262

ISBN-13: 1788017668

DOWNLOAD EBOOK

3D printing has rapidly established itself as an essential enabling technology within research and industrial chemistry laboratories. Since the early 2000s, when the first research papers applying this technique began to emerge, the uptake by the chemistry community has been both diverse and extraordinary, and there is little doubt that this fascinating technology will continue to have a major impact upon the chemical sciences going forward. This book provides a timely and extensive review of the reported applications of 3D Printing techniques across all fields of chemical science. Describing, comparing, and contrasting the capabilities of all the current 3D printing technologies, this book provides both background information and reader inspiration, to enable users to fully exploit this developing technology further to advance their research, materials and products. It will be of interest across the chemical sciences in research and industrial laboratories, for chemists and engineers alike, as well as the wider science community.


Three-Dimensional Microfabrication Using Two-Photon Polymerization

Three-Dimensional Microfabrication Using Two-Photon Polymerization

Author: Tommaso Baldacchini

Publisher: William Andrew

Published: 2019-10-31

Total Pages: 762

ISBN-13: 0128178280

DOWNLOAD EBOOK

Three-Dimensional Microfabrication Using Two-Photon Polymerization, Second Edition offers a comprehensive guide to TPP microfabrication and a unified description of TPP microfabrication across disciplines. It offers in-depth discussion and analysis of all aspects of TPP, including the necessary background, pros and cons of TPP microfabrication, material selection, equipment, processes and characterization. Current and future applications are covered, along with case studies that illustrate the book's concepts. This new edition includes updated chapters on metrology, synthesis and the characterization of photoinitiators used in TPP, negative- and positive-tone photoresists, and nonlinear optical characterization of polymers. This is an important resource that will be useful for scientists involved in microfabrication, generation of micro- and nano-patterns and micromachining. - Discusses the major types of nanomaterials used in the agriculture and forestry sectors, exploring how their properties make them effective for specific applications - Explores the design, fabrication, characterization and applications of nanomaterials for new Agri-products - Offers an overview of regulatory aspects regarding the use of nanomaterials for agriculture and forestry


3D Printing in Medicine

3D Printing in Medicine

Author: Frank J. Rybicki

Publisher: Springer

Published: 2017-09-27

Total Pages: 139

ISBN-13: 3319619241

DOWNLOAD EBOOK

This book describes the fundamentals of three-dimensional (3D) printing, addresses the practical aspects of establishing a 3D printing service in a medical facility, and explains the enormous potential value of rendering images as 3D printed models capable of providing tactile feedback and tangible information on both anatomic and pathologic states. Individual chapters also focus on selected areas of applications for 3D printing, including musculoskeletal, craniomaxillofacial, cardiovascular, and neurosurgery applications. Challenges and opportunities related to training, materials and equipment, and guidelines are addressed, and the overall costs of a 3D printing lab and the balancing of these costs against clinical benefits are discussed. Radiologists, surgeons, and other physicians will find this book to be a rich source of information on the practicalities and expanding medical applications of 3D printing.