Three Dimensional Human Organotypic Models for Biomedical Research

Three Dimensional Human Organotypic Models for Biomedical Research

Author: Fabio Bagnoli

Publisher: Springer Nature

Published: 2021-05-20

Total Pages: 265

ISBN-13: 3030624528

DOWNLOAD EBOOK

This edited volume discusses the application of very diverse human organotypic models in major areas of biomedical research. The authors lay a main focus on infectious diseases, cancer, allergies, as well as drug/vaccine discovery and toxicology studies. Representing a valid alternative to laboratory animals, these models are relevant for most areas of translational research. As the contemporary research shows, many human tissues can today be cultivated in vitro and used for several research objectives. This book provides an unprecedented overview of recent developments in an exciting field of research methodology. It is a reference guide for scientists in both academia and industry. Readers can update their knowledge and get hands-on recommendations on how to set up an organotypic model in their lab. Chapters 'Progress on Reconstructed Human Skin Models for Allergy Research and Identifying Contact Sensitizers' and 'Human Organotypic Models for Anti-infective Research' of this book are available open access under a CC BY 4.0 license at link.springer.com.


Encyclopedic Reference of Immunotoxicology

Encyclopedic Reference of Immunotoxicology

Author: Hans-Werner Vohr

Publisher: Springer

Published: 2005-06-01

Total Pages: 0

ISBN-13: 9783540441724

DOWNLOAD EBOOK

This work provides rapid access to focused information on topics of Immunotoxicology not only for scientists and those dealing with laboratory aspects but also for lecturers and advanced students. Over 200 contributing authors – including many of the world’s top specialists – have contributed full essays on all relevant topics, supplemented by keyword definitions of related terms. Full essays are structured uniformly to provide reader-friendly information on all aspects of Immunotoxicology, including methods of testing and analysis, characteristics of substances, the regulatory environment and the relevance of these to humans. The single A–Z format of both types of entry makes this reference book very easy to use. The Encyclopedic Reference of Immunotoxicology is intended to be a comprehensive work of reference which will provide easy access to relevant information in the fast-growing field of Immunotoxicology.


Biomedical Product and Materials Evaluation

Biomedical Product and Materials Evaluation

Author: P.V. Mohanan

Publisher: Woodhead Publishing

Published: 2022-01-22

Total Pages: 808

ISBN-13: 012824173X

DOWNLOAD EBOOK

Biomedical Product and Materials Evaluation: Standards and Ethics provides a much-needed overview of the procedures, issues, standards and ethical issues in the early development of biomedical products. The book covers a range of key biomedical products, from 3D printed organs and blood derived products, to stem calls and decellularized tissue products. Each chapter reviews a single product type, associated materials, biomedical applications, proven development strategies, and potential challenges. The core focus of the book is on the standardization and ethical aspects of biomedical product development, with these elements addressed and discussed in chapters dedicated to product evaluation. This is a useful reference for academics, researchers and industry professionals in R&D groups with an interest in biomaterial research and production, as well as those working in the fields of biomedical engineering, biotechnology and toxicology. - Covers a variety of biomedical products, including specific biomaterials, organs-on-chips, wound care products, combinational products, and more - Delves into strategies and considerations for product evaluation, including cytotoxicity assays, microbial and blood compatibility studies - Discusses standardization and ethical hurdles in biomedical product development and how to overcome them


Tumor Organoids

Tumor Organoids

Author: Shay Soker

Publisher: Humana Press

Published: 2017-10-20

Total Pages: 225

ISBN-13: 3319605119

DOWNLOAD EBOOK

Cancer cell biology research in general, and anti-cancer drug development specifically, still relies on standard cell culture techniques that place the cells in an unnatural environment. As a consequence, growing tumor cells in plastic dishes places a selective pressure that substantially alters their original molecular and phenotypic properties.The emerging field of regenerative medicine has developed bioengineered tissue platforms that can better mimic the structure and cellular heterogeneity of in vivo tissue, and are suitable for tumor bioengineering research. Microengineering technologies have resulted in advanced methods for creating and culturing 3-D human tissue. By encapsulating the respective cell type or combining several cell types to form tissues, these model organs can be viable for longer periods of time and are cultured to develop functional properties similar to native tissues. This approach recapitulates the dynamic role of cell–cell, cell–ECM, and mechanical interactions inside the tumor. Further incorporation of cells representative of the tumor stroma, such as endothelial cells (EC) and tumor fibroblasts, can mimic the in vivo tumor microenvironment. Collectively, bioengineered tumors create an important resource for the in vitro study of tumor growth in 3D including tumor biomechanics and the effects of anti-cancer drugs on 3D tumor tissue. These technologies have the potential to overcome current limitations to genetic and histological tumor classification and development of personalized therapies.


Organotypic Models in Drug Development

Organotypic Models in Drug Development

Author: Monika Schäfer-Korting

Publisher: Springer Nature

Published: 2021-03-25

Total Pages: 325

ISBN-13: 3030700631

DOWNLOAD EBOOK

This book provides latest findings in organotypic models in drug development and provides the scientific resonance needed in an emerging field of research in disciplines, such as molecular medicine, physiology, and pathophysiology. Today the research on human-based test systems has gained major interest and funding in the EU and the US has increased over the last years. Moreover, so-called 3R (reduce, replace, refine animal experiments) centres have been established worldwide.


Nanotechnology for Microfluidics

Nanotechnology for Microfluidics

Author: Xingyu Jiang

Publisher: John Wiley & Sons

Published: 2020-09-08

Total Pages: 444

ISBN-13: 3527345337

DOWNLOAD EBOOK

The book focuses on microfluidics with applications in nanotechnology. The first part summarizes the recent advances and achievements in the field of microfluidic technology, with emphasize on the the influence of nanotechnology. The second part introduces various applications of microfluidics in nanotechnology, such as drug delivery, tissue engineering and biomedical diagnosis.


3D Bioprinting in Regenerative Engineering

3D Bioprinting in Regenerative Engineering

Author: Ali Khademhosseini

Publisher: CRC Press

Published: 2018-04-17

Total Pages: 385

ISBN-13: 1315280485

DOWNLOAD EBOOK

Regenerative engineering is the convergence of developmental biology, stem cell science and engineering, materials science, and clinical translation to provide tissue patches or constructs for diseased or damaged organs. Various methods have been introduced to create tissue constructs with clinically relevant dimensions. Among such methods, 3D bioprinting provides the versatility, speed and control over location and dimensions of the deposited structures. Three-dimensional bioprinting has leveraged the momentum in printing and tissue engineering technologies and has emerged as a versatile method of fabricating tissue blocks and patches. The flexibility of the system lies in the fact that numerous biomaterials encapsulated with living cells can be printed. This book contains an extensive collection of papers by world-renowned experts in 3D bioprinting. In addition to providing entry-level knowledge about bioprinting, the authors delve into the latest advances in this technology. Furthermore, details are included about the different technologies used in bioprinting. In addition to the equipment for bioprinting, the book also describes the different biomaterials and cells used in these approaches. This text: Presents the principles and applications of bioprinting Discusses bioinks for 3D printing Explores applications of extrusion bioprinting, including past, present, and future challenges Includes discussion on 4D Bioprinting in terms of mechanisms and applications


Advances in Biomedical Engineering Research and Application: 2012 Edition

Advances in Biomedical Engineering Research and Application: 2012 Edition

Author:

Publisher: ScholarlyEditions

Published: 2012-12-26

Total Pages: 816

ISBN-13: 1464991537

DOWNLOAD EBOOK

Advances in Biomedical Engineering Research and Application / 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Biomedical Engineering. The editors have built Advances in Biomedical Engineering Research and Application / 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Biomedical Engineering in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Biomedical Engineering Research and Application / 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.


Engineered Cell Manipulation for Biomedical Application

Engineered Cell Manipulation for Biomedical Application

Author: Misturu Akashi

Publisher: Springer

Published: 2014-10-16

Total Pages: 271

ISBN-13: 4431551395

DOWNLOAD EBOOK

This book is the first to summarize new technologies for engineered cell manipulation. The contents focus on control of cellular functions by nanomaterials and control of three-dimensional cell–cell interactions. Control of cellular functions is important for cell differentiation, maturation, and activation, which generally are controlled by the addition of soluble cytokines or growth factors into cell culture dishes. Target antigen molecules can be efficiently delivered to the cytosol of the dendritic cells using the nanoparticle technique described here, and cellular functions such as dendritic cell maturation can be controlled easily and with precision. This book describes basic preparation of the nanoparticles, activation control of dendritic cells, immune function control, and in vivo application for various vaccination systems. The second type of control,that of cell–cell interaction, is important for tissue engineering in order to develop three-dimensional cellular constructs. To achieve in vitro engineering of three-dimensional human tissue constructs, cell–cell interaction must be controlled in three dimensions, but typical biological cell manipulation technique cannot accomplish this task. An engineered cell manipulation technique is necessary. In this book the authors describe the fabrication of nanofilms onto cell surfaces, development of three-dimensional cellular multilayers, and various applications of the cellular multilayers as three-dimensional human models. This important work will be highly informative for researchers and students in the fields of materials science, polymer science, biomaterials, medicinal science, nanotechnology, biotechnology, and biology.


Organs-on-chips

Organs-on-chips

Author: Yu-suke Torisawa

Publisher: MDPI

Published: 2020-05-27

Total Pages: 262

ISBN-13: 3039289179

DOWNLOAD EBOOK

Recent advances in microsystems technology and cell culture techniques have led to the development of organ-on-chip microdevices that produce tissue-level functionality, not possible with conventional culture models, by recapitulating natural tissue architecture and microenvironmental cues within microfluidic devices. Since the physiological microenvironments in living systems are mostly microfluidic in nature, the use of microfluidic devices facilitates engineering cellular microenvironments; the microfluidic devices allow for control of local chemical gradients and dynamic mechanical forces, which play important roles in cellular viability and function. The organ-on-chip microdevices have great potential to promote drug discovery and development, to model human physiology and disease, and to replace animal models for efficacy and toxicity testing. Recently, induced pluripotent stem (iPS) cells have been leveraged to develop organs-on-chips, which enable various types of organ models and disease models not possible with primary cells and cell lines. This Special Issue seeks to showcase research papers, short communications, and review articles that focus on: (1) microdevices to mimic or control cellular microenvironment; (2) microdevices to evaluate interactions between different organ models; (3) microdevices to maintain iPS cells or iPSC-derived cells; and (4) sensors and techniques to evaluate drug efficacy or toxicity.