This book will be a valuable step toward the common goal of an "adaptive" scientific community: improving everyone's quality of life in a sustainable and safe way.
First published in 1998. A collection of papers presented at the Proceedings of the Eighth Japan-U.S. Conference On Composite Materials, SEPTEMBER 24 to 25 , 1998. The conference is organized by Wayne State University and American Society for Composites in cooperation with U.S. Organizing Committee and the Japanese Organizing Committee. Since the Seventh Meeting in Kyoto in 1995, this meeting brings together accomplished composite researchers between the two countries to share latest developments and advances in the field. The scope of the current conference ranges over all aspects of composite materials with some emphasis on infrastructure applications of composites. Key areas in composites are covered by 110 papers with 35 presentations from Japan.
The twenty-first century could be called the 'Multifunctional Materials Age'. The inspiration for multifunctional materials comes from nature, and therefore these are often referred to as bio-inspired materials. Bio-inspired materials encompass smart materials and structures, multifunctional materials and nano-structured materials. This is a dawn of revolutionary materials that may provide a 'quantum jump' in performance and multi-capability. This book focuses on smart materials, structures and systems, which are also referred to as intelligent, adaptive, active, sensory and metamorphic. The purpose of these materials from the perspective of smart systems is their ability to minimize life-cycle cost and/or expand the performance envelope. The ultimate goal is to develop biologically inspired multifunctional materials with the capability to adapt their structural characteristics (such as stiffness, damping and viscosity) as required, monitor their health condition, perform self-diagnosis and self-repair, morph their shape and undergo significant controlled motion over a wide range of operating conditions.
A typical engineering task during the development of any system is, among others, to improve its performance in terms of cost and response. Improvements can be achieved either by simply using design rules based on the experience or in an automated way by using optimization methods that lead to optimum designs. Design Optimization of Active and Passive Structural Control Systems includes Earthquake Engineering and Tuned Mass Damper research topics into a volume taking advantage of the connecting link between them, which is optimization. This is a publication addressing the design optimization of active and passive control systems. This title is perfect for engineers, professionals, professors, and students alike, providing cutting edge research and applications.