Microgravity Combustion

Microgravity Combustion

Author: Howard D. Ross

Publisher: Elsevier

Published: 2001-09-03

Total Pages: 601

ISBN-13: 0080549977

DOWNLOAD EBOOK

This book provides an introduction to understanding combustion, the burning of a substance that produces heat and often light, in microgravity environments-i.e., environments with very low gravity such as outer space. Readers are presented with a compilation of worldwide findings from fifteen years of research and experimental tests in various low-gravity environments, including drop towers, aircraft, and space.Microgravity Combustion is unique in that no other book reviews low- gravity combustion research in such a comprehensive manner. It provides an excellent introduction for those researching in the fields of combustion, aerospace, and fluid and thermal sciences.* An introduction to the progress made in understanding combustion in a microgravity environment* Experimental, theoretical and computational findings of current combustion research* Tutorial concepts, such as scaling analysis* Worldwide microgravity research findings


Microgravity Fluid Mechanics

Microgravity Fluid Mechanics

Author: Hans J. Rath

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 595

ISBN-13: 3642500919

DOWNLOAD EBOOK

Substantial progress has been made in the field of fluid mechanics under compensated gravity effects (microgravity). The main task of this disciplinehas evolved tremendously. Starting out with the aim of providing assistance in describing flow problems in other microgravity sciences, microgravityfluid mechanics has itself now become acknowledge as a powerful means of research. The IUTAM Symposium on Microgravity Fluid Mechanics has pro- vided the long-awaited forum for scientists from 15 coun- tries to discuss and concretize the "state-of-the-art" in this discipline. The main themes treated are: Interface Phe- nomena, Convective Processes; Marangoni effects, Solidifica- tion, Combustion, Physico-Chemical Processes, Multiphase Phenomena, Residual Acceleration effects, Fluid Handling and Non-Newtonian Flows.


Recapturing a Future for Space Exploration

Recapturing a Future for Space Exploration

Author: National Research Council

Publisher: National Academies Press

Published: 2012-01-30

Total Pages: 464

ISBN-13: 0309163846

DOWNLOAD EBOOK

More than four decades have passed since a human first set foot on the Moon. Great strides have been made in our understanding of what is required to support an enduring human presence in space, as evidenced by progressively more advanced orbiting human outposts, culminating in the current International Space Station (ISS). However, of the more than 500 humans who have so far ventured into space, most have gone only as far as near-Earth orbit, and none have traveled beyond the orbit of the Moon. Achieving humans' further progress into the solar system had proved far more difficult than imagined in the heady days of the Apollo missions, but the potential rewards remain substantial. During its more than 50-year history, NASA's success in human space exploration has depended on the agency's ability to effectively address a wide range of biomedical, engineering, physical science, and related obstacles-an achievement made possible by NASA's strong and productive commitments to life and physical sciences research for human space exploration, and by its use of human space exploration infrastructures for scientific discovery. The Committee for the Decadal Survey of Biological and Physical Sciences acknowledges the many achievements of NASA, which are all the more remarkable given budgetary challenges and changing directions within the agency. In the past decade, however, a consequence of those challenges has been a life and physical sciences research program that was dramatically reduced in both scale and scope, with the result that the agency is poorly positioned to take full advantage of the scientific opportunities offered by the now fully equipped and staffed ISS laboratory, or to effectively pursue the scientific research needed to support the development of advanced human exploration capabilities. Although its review has left it deeply concerned about the current state of NASA's life and physical sciences research, the Committee for the Decadal Survey on Biological and Physical Sciences in Space is nevertheless convinced that a focused science and engineering program can achieve successes that will bring the space community, the U.S. public, and policymakers to an understanding that we are ready for the next significant phase of human space exploration. The goal of this report is to lay out steps and develop a forward-looking portfolio of research that will provide the basis for recapturing the excitement and value of human spaceflight-thereby enabling the U.S. space program to deliver on new exploration initiatives that serve the nation, excite the public, and place the United States again at the forefront of space exploration for the global good.


Safety Design for Space Systems

Safety Design for Space Systems

Author: Gary Eugene Musgrave

Publisher: Butterworth-Heinemann

Published: 2009-03-27

Total Pages: 988

ISBN-13: 0080559220

DOWNLOAD EBOOK

Progress in space safety lies in the acceptance of safety design and engineering as an integral part of the design and implementation process for new space systems. Safety must be seen as the principle design driver of utmost importance from the outset of the design process, which is only achieved through a culture change that moves all stakeholders toward front-end loaded safety concepts. This approach entails a common understanding and mastering of basic principles of safety design for space systems at all levels of the program organisation. Fully supported by the International Association for the Advancement of Space Safety (IAASS), written by the leading figures in the industry, with frontline experience from projects ranging from the Apollo missions, Skylab, the Space Shuttle and the International Space Station, this book provides a comprehensive reference for aerospace engineers in industry. It addresses each of the key elements that impact on space systems safety, including: the space environment (natural and induced); human physiology in space; human rating factors; emergency capabilities; launch propellants and oxidizer systems; life support systems; battery and fuel cell safety; nuclear power generators (NPG) safety; habitat activities; fire protection; safety-critical software development; collision avoidance systems design; operations and on-orbit maintenance. - The only comprehensive space systems safety reference, its must-have status within space agencies and suppliers, technical and aerospace libraries is practically guaranteed - Written by the leading figures in the industry from NASA, ESA, JAXA, (et cetera), with frontline experience from projects ranging from the Apollo missions, Skylab, the Space Shuttle, small and large satellite systems, and the International Space Station - Superb quality information for engineers, programme managers, suppliers and aerospace technologists; fully supported by the IAASS (International Association for the Advancement of Space Safety)