Vapour–Liquid Equilibrium

Vapour–Liquid Equilibrium

Author: Eduard Hála

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 624

ISBN-13: 1483160866

DOWNLOAD EBOOK

Vapor-Liquid Equilibrium, Second Edition covers the theoretical principles and methods of calculation of equilibrium conditions from various experimental data and the elements of measuring technique, as well as the instruments for the direct determination of the equilibrium compositions of the liquid and vapor phases of the system. The book discusses the relations necessary for the thermodynamic treatment of the equilibrium between the liquid and vapor phase of a system; the concept of an ideal solution and auxiliary thermodynamic functions; and the activity and the activity coefficient. The text also describes vapor-liquid equilibrium in real systems (electrolytes and non-electrolytes) and in systems whose components (i.e. temperature, pressure, and composition of phases) mutually react according to several stoichiometric equations. The criteria of purity of substances and the methods of measuring temperature; low, medium, and high pressures; the pressures of the saturated vapors at given temperatures; and the boiling points at given pressures used in laboratory work in the field of vapor-liquid equilibrium are considered. The book also tackles the methods for the direct determination of equilibrium data (distillation, circulation, static, dew and bubble point, and flow methods). The text concludes with a review of the literature on the systems whose vapor-liquid equilibrium data had been measured and reported to the beginning of 1954. Workers in the chemical industry who deal with problems of distillation and rectification will find the book useful.


Phase Equilibria

Phase Equilibria

Author: Andreas L. Muhlbauer

Publisher: Taylor & Francis

Published: 2023-02-03

Total Pages: 486

ISBN-13: 1351425064

DOWNLOAD EBOOK

This work provides coverage of experimental and theoretical procedures for vapour-liquid equilibria (VLE). A survey of the different models and approaches in recent literature enables the reader to choose the appropriate action.


Design and Control of Distillation Systems for Separating Azeotropes

Design and Control of Distillation Systems for Separating Azeotropes

Author: William L. Luyben

Publisher: John Wiley & Sons

Published: 2011-12-06

Total Pages: 553

ISBN-13: 1118209834

DOWNLOAD EBOOK

Hands-on guidance for the design, control, and operation of azeotropic distillation systems Following this book's step-by-step guidance, readers learn to master tested and proven methods to overcome a major problem in chemical processing: the distillation and separation of azeotropes. Practical in focus, the book fully details the design, control, and operation of azeotropic distillation systems, using rigorous steady-state and dynamic simulation tools. Design and Control of Distillation Systems for Separating Azeotropes is divided into five parts: Fundamentals and tools Separations without adding other components Separations using light entrainer (heterogeneous azeotropic distillation) Separations using heavy entrainer (extractive distillation) Other ways for separating azeotropes The distillation methods presented cover a variety of important industrial chemical systems, including the processing of biofuels. For most of these chemical systems, the authors explain how to achieve economically optimum steady-state designs. Moreover, readers learn how to implement practical control structures that provide effective load rejection to manage disturbances in throughput and feed composition. Trade-offs between steady-state energy savings and dynamic controllability are discussed, helping readers design and implement the distillation system that best meets their particular needs. In addition, economic and dynamic comparisons between alternative methods are presented, including an example of azeotropic distillation versus extractive distillation for the isopropanol/water system. With its focus on practical solutions, Design and Control of Distillation Systems for Separating Azeotropes is ideal for engineers facing a broad range of azeotropic separation problems. Moreover, this book is recommended as a supplemental text for undergraduate and graduate engineering courses in design, control, mass transfer, and bio-processing.


The Thermodynamics of Phase and Reaction Equilibria

The Thermodynamics of Phase and Reaction Equilibria

Author: Ismail Tosun

Publisher: Newnes

Published: 2012-10-17

Total Pages: 736

ISBN-13: 0444594973

DOWNLOAD EBOOK

This book provides you with a sound foundation for understanding abstract concepts (eg physical properties such as fugacity, etc or chemical processes, ie distillation, etc) of phase and reaction equilibria and shows you how to apply these concepts to solve practical problems using numerous and clear examples.


Vapor-liquid Phase Equilibria of Nonideal Fluids with a Ge-EoS Model

Vapor-liquid Phase Equilibria of Nonideal Fluids with a Ge-EoS Model

Author: Socrates Ioannidis

Publisher:

Published: 1996

Total Pages: 440

ISBN-13:

DOWNLOAD EBOOK

This study dealt with the prediction and correlation of vapor-liquid equilibria behavior of nonideal fluids. The thermodynamic formalism of the GE-EoS models, which combines the two traditional methods gamma-phi and phi-phi used so far for low and high pressure phase equilibria correlations respectively, has been combined with the 1FGE model, based on one-fluid theory, to produce a more consistent approach to the phase equilibrium problem. In the first part of our study we examine the predictive abilities of our model for vapor-liquid equilibria of highly nonideal fluids. The results establish the fact that the Huron-Vidal mixing rule with a one parameter version of the lFGE model, is able to successfully utilize available experimental information at low pressures for phase equilibria predictions of multicomponent mixtures over an extended range of pressures and temperatures. In the second part of the study we perform an analysis of the correlative abilities of the 1FGE model, as applied to hydrogen-hydrocarbon mixtures. The results of this part suggest that the unique local composition character of the 1FGE model, along with its one size and one temperature-dependent energy parameter, make it able to adequately describe vapor-liquid equilibria behavior of multicomponent mixtures for this highly asymmetric class of mixtures. Moreover, it is shown that the model parameters for binary hydrogen-hydrocarbon mixtures can be correlated to the acentric factor of the hydrocarbon. The important class of the refrigerant mixtures was modeled in the third part of this study. The lFGE model was introduced into the Wong-Sandler mixing rule, based on the infinite pressure state thermodynamic formalism. The results for these systems showed that a limited amount of experimental data, either at low or high pressures can be utilized to provide a parameter which is practically independent of the temperature set used. As shown from the results, this single parameter can be used to extend vapor-liquid equilibria predictions over a range of conditions for this difficult class of systems. More importantly, we set a heuristic rule able to screen multiparameter and one parameter models. A coordination temperature-parameter planet can be used as a predictive tool from a limited amount of information. Our model comes in lieu of the GE models based on two-fluid theory, which are inconsistent with the one fluid character of an EoS. The 1FGE-EoS framework proposed in this work meets current needs in the area of Applied Thermodynamics, which require that the model's parameters can be obtained from a limited information of experimental data and can give for accurate phase equilibria predictions of nonideal mixtures from low to high pressures.