Thermo-Acoustics of Nanofluids and Transfer Processes

Thermo-Acoustics of Nanofluids and Transfer Processes

Author: Shriram S Sonawane

Publisher:

Published: 2025-03-18

Total Pages: 0

ISBN-13: 9781032622910

DOWNLOAD EBOOK

This book explains the physical principles and theoretical basis of acoustics of nanofluids with mathematical rigor, focusing on concepts and points of view that have proven effective in applications such as heat transfer, petroleum science and technology, wastewater treatment, food processing, and hydrogen production. It provides a rigorous framework to aid readers in building innovative nanofluid-based devices, covering essential topics such as the study and measurement of thermophysical characteristics, convection, and heat transfer equipment performance. Features: Focusses on the basics of nanofluids shedding light on the thermo-acoustic behaviour. Speaks about the specific needs of a nanofluid for a process in terms of both heat and mass transfer. Discusses the process transfer of nanofluids with reference to thermo-acoustics. Includes numerical and experimental investigations of the nanofluids in various field of industrial applications. Reviews fundamentals and applied aspects of acoustic cavitation. This book is aimed at graduate students and researchers in fluid dynamics, nanotechnology, and chemical and mechanical engineering.


Nanoparticle Heat Transfer and Fluid Flow

Nanoparticle Heat Transfer and Fluid Flow

Author: W. J. Minkowycz

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 335

ISBN-13: 1439861951

DOWNLOAD EBOOK

Featuring contributions by leading researchers in the field, Nanoparticle Heat Transfer and Fluid Flow explores heat transfer and fluid flow processes in nanomaterials and nanofluids, which are becoming increasingly important across the engineering disciplines. The book covers a wide range, from biomedical and energy conversion applications to mate


Nanofluid Heat and Mass Transfer in Engineering Problems

Nanofluid Heat and Mass Transfer in Engineering Problems

Author: Mohsen Sheikholeslami Kandelousi

Publisher: BoD – Books on Demand

Published: 2017-03-15

Total Pages: 286

ISBN-13: 9535130072

DOWNLOAD EBOOK

In the present book, nanofluid heat and mass transfer in engineering problems are investigated. The use of additives in the base fluid like water or ethylene glycol is one of the techniques applied to augment heat transfer. Newly, innovative nanometer-sized particles have been dispersed in the base fluid in heat transfer fluids. The fluids containing the solid nanometer-sized particle dispersion are called "nanofluids." At first, nanofluid heat and mass transfer over a stretching sheet are provided with various boundary conditions. Problems faced for simulating nanofluids are reported. Also, thermophysical properties of various nanofluids are presented. Nanofluid flow and heat transfer in the presence of magnetic field are investigated. Furthermore, applications for electrical and biomedical engineering are provided. Besides, applications of nanofluid in internal combustion engine are provided.


Nanofluidics

Nanofluidics

Author: Efstathios E. (Stathis) Michaelides

Publisher: Springer

Published: 2014-05-19

Total Pages: 351

ISBN-13: 3319056212

DOWNLOAD EBOOK

This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical thermodynamics to explain and interpret experimental observations Presents the theory and experimental results for both thermodynamic and transport properties Examines all transport properties and transport processes as well as their relationships through the pertinent macroscopic coefficients Combines recent knowledge pertaining to nanofluids with the previous fifty years of research on particulate flows, including research on transient flow and heat transfer of particulate suspensions Conducts an holistic examination of the material from more than 500 archival publications


Nano and Bio Heat Transfer and Fluid Flow

Nano and Bio Heat Transfer and Fluid Flow

Author: Majid Ghassemi

Publisher: Academic Press

Published: 2017-03-15

Total Pages: 162

ISBN-13: 0128038527

DOWNLOAD EBOOK

Nano and Bio Heat Transfer and Fluid Flow focuses on the use of nanoparticles for bio application and bio-fluidics from an engineering perspective. It introduces the mechanisms underlying thermal and fluid interaction of nanoparticles with biological systems. This book will help readers translate theory into real world applications, such as drug delivery and lab-on-a-chip. The content covers how transport at the nano-scale differs from the macro-scale, also discussing what complications can arise in a biologic system at the nano-scale. It is ideal for students and early career researchers, engineers conducting experimental work on relevant applications, or those who develop computer models to investigate/design these systems. Content coverage includes biofluid mechanics, transport phenomena, micro/nano fluid flows, and heat transfer. - Discusses nanoparticle applications in drug delivery - Covers the engineering fundamentals of bio heat transfer and fluid flow - Explains how to simulate, analyze, and evaluate the transportation of heat and mass problems in bio-systems


Heat Transfer Enhancement with Nanofluids

Heat Transfer Enhancement with Nanofluids

Author: Vincenzo Bianco

Publisher: CRC Press

Published: 2015-04-01

Total Pages: 473

ISBN-13: 1482254026

DOWNLOAD EBOOK

Nanofluids are gaining the attention of scientists and researchers around the world. This new category of heat transfer medium improves the thermal conductivity of fluid by suspending small solid particles within it and offers the possibility of increased heat transfer in a variety of applications. Bringing together expert contributions from


Hybrid Nanofluids for Convection Heat Transfer

Hybrid Nanofluids for Convection Heat Transfer

Author: Hafiz Muhammad Ali

Publisher: Academic Press

Published: 2020-05-15

Total Pages: 304

ISBN-13: 012819281X

DOWNLOAD EBOOK

Hybrid Nanofluids for Convection Heat Transfer discusses how to maximize heat transfer rates with the addition of nanoparticles into conventional heat transfer fluids. The book addresses definitions, preparation techniques, thermophysical properties and heat transfer characteristics with mathematical models, performance-affecting factors, and core applications with implementation challenges of hybrid nanofluids. The work adopts mathematical models and schematic diagrams in review of available experimental methods. It enables readers to create new techniques, resolve existing research problems, and ultimately to implement hybrid nanofluids in convection heat transfer applications. - Provides key heat transfer performance and thermophysical characteristics of hybrid nanofluids - Reviews parameter selection and property measurement techniques for thermal performance calibration - Explores the use of predictive mathematical techniques for experimental properties


Nanofluid Applications for Advanced Thermal Solutions

Nanofluid Applications for Advanced Thermal Solutions

Author: Shriram S. Sonawane

Publisher: Elsevier

Published: 2023-06-28

Total Pages: 381

ISBN-13: 0443152403

DOWNLOAD EBOOK

Nanofluid Applications for Advanced Thermal Solutions covers heat transfer applications of nanofluids in a variety of fields and the main techniques used in nanofluid flow and heat transfer analysis. The book features an introduction to heat transfer, nanofluid conduction, convection and nanofluid boiling and provides a thorough understanding of a variety of applications, including the energy storage component of solar PVT systems. It covers fundamental topics such as the analysis and measurement of thermophysical properties, convection, and heat transfer equipment performance, and provides a rigorous framework to assist readers in developing new nanofluid-based devices. Finally, the book explores convective instabilities, nanofluids in porous media, and entropy generation in nanofluids. This will be a valuable resource for upper undergraduate, postgraduate, and doctoral students and researchers in the fields of nanotechnology and nanofluids looking at heat transfer processes in chemical engineering and the petroleum industry. - Provides a comprehensive overview of the heat transfer application of nanofluids in a variety of fields - Features numerical and experimental investigations of hybrid and mono nanoparticles based nanofluids - Explores comparative performance investigations of various nanofluids for absorption/regeneration and metal extraction/stripping operations - Provides case examples of operation and scale-up challenges for nanofluid applications in the industrial process


Nanofluids and Mass Transfer

Nanofluids and Mass Transfer

Author: Mohammad Reza Rahimpour

Publisher: Elsevier

Published: 2021-09-04

Total Pages: 512

ISBN-13: 0128241330

DOWNLOAD EBOOK

In the recent decades, efficiency enhancement of refineries and chemical plants has been become a focus of research and development groups. Use of nanofluids in absorption, regeneration, liquid-liquid extraction and membrane processes can lead to mass transfer and heat transfer enhancement in processes which results in an increased efficiency in all these processes. Nanofluids and Mass Transfer introduces the role of nanofluids in improving mass transfer phenomena and expressing their characteristics and properties. The book also covers the theory and modelling procedures in details and finally illustrates various applications of Nanofluids in mass transfer enhancement in various processes such as absorption, regeneration, liquid-liquid extraction and membrane processes and how can nanofluids increase mass transfer in processes. - Introduces specifications of nanofluids and mechanisms of mass transfer enhancement by nanofluids in various mass transfer processes - Discusses mass transfer enhancement in various mass transfer processes such as: absorption, regeneration, liquid-liquid extraction and membrane processes - Offers modelling mass transfer and flow in nanofluids - Challenges industrialization and scale up of nanofluids


Nanofluid in Heat Exchangers for Mechanical Systems

Nanofluid in Heat Exchangers for Mechanical Systems

Author: Zhixiong Li

Publisher: Elsevier

Published: 2020-04-09

Total Pages: 368

ISBN-13: 0128219246

DOWNLOAD EBOOK

Nanofluid in Heat Exchanges for Mechanical Systems: Numerical Simulation shows how the finite volume method is used to simulate various applications of heat exchanges. Heat transfer enhancement methods are introduced in detail, along with a hydrothermal analysis and second law approaches for heat exchanges. The melting process in heat exchanges is also covered, as is the influence of variable magnetic fields on the performance of heat exchange. This is an important reference source for materials scientists and mechanical engineers who are looking to understand the main ways that nanofluid flow is simulated and applied in industry. - Provides detailed coverage of major models used in nanofluid analysis, including the finite volume method, governing equations for turbulent flow, and equations of nanofluid in presence of variable magnetic field - Offers detailed coverage of swirling flow devices and melting processes - Assesses which models should be applied in which situations