Chemical Physics of Thin Film Deposition Processes for Micro- and Nano-Technologies

Chemical Physics of Thin Film Deposition Processes for Micro- and Nano-Technologies

Author: Y. Pauleau

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 372

ISBN-13: 940100353X

DOWNLOAD EBOOK

An up-to-date collection of tutorial papers on the latest advances in the deposition and growth of thin films for micro and nano technologies. The emphasis is on fundamental aspects, principles and applications of deposition techniques used for the fabrication of micro and nano devices. The deposition of thin films is described, emphasising the gas phase and surface chemistry and its effects on the growth rates and properties of films. Gas-phase phenomena, surface chemistry, growth mechanisms and the modelling of deposition processes are thoroughly described and discussed to provide a clear understanding of the growth of thin films and microstructures via thermally activated, laser induced, photon assisted, ion beam assisted, and plasma enhanced vapour deposition processes. A handbook for engineers and scientists and an introduction for students of microelectronics.


Nanomagnetism and Spintronics

Nanomagnetism and Spintronics

Author: Teruya Shinjo

Publisher: Elsevier

Published: 2013-10-07

Total Pages: 373

ISBN-13: 0444632778

DOWNLOAD EBOOK

The concise and accessible chapters of Nanomagnetism and Spintronics, Second Edition, cover the most recent research in areas of spin-current generation, spin-calorimetric effect, voltage effects on magnetic properties, spin-injection phenomena, giant magnetoresistance (GMR), and tunnel magnetoresistance (TMR). Spintronics is a cutting-edge area in the field of magnetism that studies the interplay of magnetism and transport phenomena, demonstrating how electrons not only have charge but also spin. This second edition provides the background to understand this novel physical phenomenon and focuses on the most recent developments and research relating to spintronics. This exciting new edition is an essential resource for graduate students, researchers, and professionals in industry who want to understand the concepts of spintronics, and keep up with recent research, all in one volume. - Provides a concise, thorough evaluation of current research - Surveys the important findings up to 2012 - Examines the future of devices and the importance of spin current


Design of Autoreaction

Design of Autoreaction

Author: Sandra G.L. Persiani

Publisher: Springer Nature

Published: 2020-08-08

Total Pages: 192

ISBN-13: 9811561788

DOWNLOAD EBOOK

This book provides the readers with a timely guide to the application and integration of interdisciplinary principles from the fields of kinetic design, mechanics, energy and materials engineering in the fields of architecture and engineering design. It explores the potential integration of autoreactive solutions, unpowered kinetic systems triggered by changes in the surrounding latent energy conditions, within man-made artefacts with added functionality and efficiency. Related interdisciplinary parameters are explored discussing morphology, mechanics, energy and materials in detail. Each chapter examines the implications of autoreactivity in one specific field, providing a general overview and listing relevant motion design parameters and identifying for the reader those aspects that have a high potential to open up for new design directions. The book guides readers through a highly multidisciplinary field of design, offering an extraordinary resource of knowledge for professional architects, engineers and designers, as well as for university teachers, researchers and students. Interdisciplinary research is presented throughout the book as a powerful resource that can serve architecture and design, and a learning method to rethink innovative, optimal and sustainable solutions.