Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes (TADF-OLEDs) comprehensively introduces the history of TADF, along with a review of fundamental concepts. Then, TADF emitters with different colors, such as blue, green, red and NIR as well as white OLEDs are discussed in detail. Other sections cover exciplex-type TADF materials, emerging application of TADF emitters as a host in OLEDs, and applications of TADF materials in organic lasers and biosensing. - Discusses green, blue, red, NIR and white TADF emitters and their design strategies for improved performance for light-emitting diode applications - Addresses emerging materials, such as molecular and exciplex-based TADF materials - Includes emerging applications like lasers and biosensors
Dieses Fachbuch eines Pioniers in diesem schnell wachsenden Fachbereich fasst die jüngsten Erkenntnisse zur Optimierung von OLEDs zusammen. Die Theorie wird ausführlich beschrieben, ebenso verschiedene organische und anorganische emittierende Materialien, Display- und Lichtanwendungen.
Comprehensive coverage of organic electronics, including fundamental theory, basic properties, characterization methods, device physics, and future trends Organic semiconductor materials have vast commercial potential for a wide range of applications, from self-emitting OLED displays and solid-state lighting to plastic electronics and organic solar cells. As research in organic optoelectronic devices continues to expand at an unprecedented rate, organic semiconductors are being applied to flexible displays, biosensors, and other cost-effective green devices in ways not possible with conventional inorganic semiconductors. Organic Semiconductors for Optoelectronics is an up-to-date review of the both the fundamental theory and latest research and development advances in organic semiconductors. Featuring contributions from an international team of experts, this comprehensive volume covers basic properties of organic semiconductors, characterization techniques, device physics, and future trends in organic device development. Detailed chapters provide key information on the device physics of organic field-effect transistors, organic light-emitting diodes, organic solar cells, organic photosensors, and more. This authoritative resource: Provides a clear understanding of the optoelectronic properties of organic semiconductors and their influence to overall device performance Explains the theories behind relevant mechanisms in organic semiconducting materials and in organic devices Discusses current and future trends and challenges in the development of organic optoelectronic devices Reviews electronic properties, device mechanisms, and characterization techniques of organic semiconducting materials Covers theoretical concepts of optical properties of organic semiconductors including fluorescent, phosphorescent, and thermally-assisted delayed fluorescent emitters An important new addition to the Wiley Series in Materials for Electronic & Optoelectronic Applications, Organic Semiconductors for Optoelectronics bridges the gap between advanced books and undergraduate textbooks on semiconductor physics and solid-state physics. It is essential reading for academic researchers, graduate students, and industry professionals involved in organic electronics, materials science, thin film devices, and optoelectronics research and development.
A Comprehensive Source for Taking on the Next Stage of OLED R&DOLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes brings together key topics across the field of organic light-emitting diodes (OLEDs), from fundamental chemistry and physics to practical materials science and engineering aspects to design and ma
This book presents the recent achievements towards the next generation of Light-emitting electrochemical cells (LEC). Its first part focus on the definition, history and mechanism of LEC, going then to concepts and challenges and, finally, giving the reader examples of current application of new electroluminescent materials. The chapters are written by different international groups working on LEC.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Inspired by naturally occurring light-active molecular systems such as photosynthesis, scientists have long devoted their efforts to understanding how light and molecules interact. Based on a raft of knowledge on light absorption, energy migration and electron transfer, fluorescence and phosphorescence, and various photochemical reactions, light can now be utilized for energy conversion, information storage, medical applications, and development of next-generation photofunctional materials that cannot be obtained via conventional organic synthesis. This book overviews some of the cutting-edge p-conjugated molecular and polymer materials for organic photovoltaics, artificial photosynthesis, and organic light-emitting devices. It gives insights into the interactions between light and molecules and discusses sophisticated molecular designs, self-assembly and self-organization strategies, and state-of-the-art unconventional analytical methods.
Aggregation-Induced Emission (AIE): A Practical Guide introduces readers to the topic, guiding them through fundamental concepts and the latest advances in applications. The book covers concepts, principles and working mechanisms of AIE in AIE-active luminogens, with different classes of AIE luminogens reviewed, including polymers, three-dimensional frameworks (MOFs and COFs) and supramolecular gels. Special focus is given to the structure-property relationship, structural design strategies, targeted properties and application performance. The book provides readers with a deep understanding, not only on the fundamental principles of AIE, but more importantly, on how AIE luminogens and AIE properties can be incorporated in material development. - Provides the fundamental principles, design and synthesis strategies of aggregation induced emission materials - Reviews the most relevant applications in materials design for stimuli-responsive materials, biomedical applications, chemo-sensing and optoelectronics - Emphasizes structural design and its connection to aggregation induced emission properties, also exploring the structure-property relationship
This book provides a comprehensive and up-to-date guide to the AMOLED technologies and applications which have become industry standard in a range of devices, from small mobile displays to large televisions. Unlike other books on the topic, which cover the fundamentals, materials, processing, and manufacturing of OLEDs, this one-stop book discusses the core components, such as TFT backplanes, OLED materials and devices, and driving schematics together in one volume with chapters written by experts from leading international companies in the field of OLED materials and OLED TVs. It also examines emerging areas, such as micro-LEDs, displays using quantum dots, and AR & VR displays. Presenting the latest research trends as well as the basic principles of each topic, this book is intended for undergraduate and postgraduate students taking display-related courses, new researchers, and engineers in related fields.
Luminescence - OLED Technology and Applications is a collection of reviewed and relevant research chapters offering a comprehensive overview of recent developments in the field of organic light-emitting diode (OLED) materials and devices. The book comprises chapters authored by various researchers and is edited by an expert in the field. It provides a thorough overview of the latest technologies and applications in this field and opens new possible research paths for further novel developments.