Thermal Transport in Low Dimensions

Thermal Transport in Low Dimensions

Author: Stefano Lepri

Publisher: Springer

Published: 2016-04-07

Total Pages: 418

ISBN-13: 3319292617

DOWNLOAD EBOOK

Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of nanotubes and graphene. Possible future developments on heat flow control and thermoelectric energy conversion will be outlined. This volume aims at being the first step for graduate students and researchers entering the field as well as a reference for the community of scientists that, from different backgrounds (theoretical physics, mathematics, material sciences and engineering), has grown in the recent years around those themes.


Strong Interactions in Low Dimensions

Strong Interactions in Low Dimensions

Author: D. Baeriswyl

Publisher: Springer Science & Business Media

Published: 2007-09-29

Total Pages: 441

ISBN-13: 1402034636

DOWNLOAD EBOOK

This book provides an attempt to convey the colorful facets of condensed matter systems with reduced dimensionality. Some of the specific features predicted for interacting one-dimensional electron systems, such as charge- and spin-density waves, have been observed in many quasi-one-dimensional materials. The two-dimensional world is even richer: besides d-wave superconductivity and the Quantum Hall Effect - perhaps the most spectacular phases explored during the last two decades - many collective charge and spin states have captured the interest of researchers, such as charge stripes or spontaneously generated circulating currents. Recent years have witnessed important progress in material preparation, measurement techniques and theoretical methods. Today larger and better samples, higher flux for neutron beams, advanced light sources, better resolution in electron spectroscopy, new computational algorithms, and the development of field-theoretical approaches allow an in-depth analysis of the complex many-body behaviour of low-dimensional materials. The epoch when simple mean-field arguments were sufficient for describing the gross features observed experimentally is definitely over. The Editors' aim is to thoroughly explain a number of selected topics: the application of dynamical probes, such as neutron scattering, optical absorption and photoemission, as well as transport studies, both electrical and thermal. Some of the more theoretical chapters are directly relevant for experiments, such as optical spectroscopy, transport in one-dimensional models, and the phenomenology of charge inhomogeneities in layered materials, while others discuss more general topics and methods, for example the concept of a Luttinger liquid and bosonization, or duality transformations, both promising tools for treating strongly interacting many-body systems.


Quantum Transport in Mesoscopic Systems

Quantum Transport in Mesoscopic Systems

Author: David Sánchez

Publisher: MDPI

Published: 2021-01-06

Total Pages: 426

ISBN-13: 3039433660

DOWNLOAD EBOOK

Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.


Solid State Properties

Solid State Properties

Author: Mildred Dresselhaus

Publisher: Springer

Published: 2018-01-17

Total Pages: 521

ISBN-13: 3662559226

DOWNLOAD EBOOK

This book fills a gap between many of the basic solid state physics and materials sciencebooks that are currently available. It is written for a mixed audience of electricalengineering and applied physics students who have some knowledge of elementaryundergraduate quantum mechanics and statistical mechanics. This book, based on asuccessful course taught at MIT, is divided pedagogically into three parts: (I) ElectronicStructure, (II) Transport Properties, and (III) Optical Properties. Each topic is explainedin the context of bulk materials and then extended to low-dimensional materials whereapplicable. Problem sets review the content of each chapter to help students to understandthe material described in each of the chapters more deeply and to prepare them to masterthe next chapters.


Principles of Heat Transfer in Porous Media

Principles of Heat Transfer in Porous Media

Author: M. Kaviany

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 636

ISBN-13: 1468404121

DOWNLOAD EBOOK

Although the empirical treatment of fluid flow and heat transfer in porous media is over a century old, only in the last three decades has the transport in these heterogeneous systems been addressed in detail. So far, single-phase flows in porous media have been treated or at least formulated satisfactorily, while the subject of two-phase flow and the related heat-transfer in porous media is still in its infancy. This book identifies the principles of transport in porous media and compares the avalaible predictions based on theoretical treatments of various transport mechanisms with the existing experimental results. The theoretical treatment is based on the volume-averaging of the momentum and energy equations with the closure conditions necessary for obtaining solutions. While emphasizing a basic understanding of heat transfer in porous media, this book does not ignore the need for predictive tools; whenever a rigorous theoretical treatment of a phenomena is not avaliable, semi-empirical and empirical treatments are given.


Phonon Thermal Transport in Silicon-Based Nanomaterials

Phonon Thermal Transport in Silicon-Based Nanomaterials

Author: Hai-Peng Li

Publisher: Springer

Published: 2018-09-08

Total Pages: 94

ISBN-13: 9811326371

DOWNLOAD EBOOK

In this Brief, authors introduce the advance in theoretical and experimental techniques for determining the thermal conductivity in nanomaterials, and focus on review of their recent theoretical studies on the thermal properties of silicon–based nanomaterials, such as zero–dimensional silicon nanoclusters, one–dimensional silicon nanowires, and graphenelike two–dimensional silicene. The specific subject matters covered include: size effect of thermal stability and phonon thermal transport in spherical silicon nanoclusters, surface effects of phonon thermal transport in silicon nanowires, and defects effects of phonon thermal transport in silicene. The results obtained are supplemented by numerical calculations, presented as tables and figures. The potential applications of these findings in nanoelectrics and thermoelectric energy conversion are also discussed. In this regard, this Brief represents an authoritative, systematic, and detailed description of the current status of phonon thermal transport in silicon–based nanomaterials. This Brief should be a highly valuable reference for young scientists and postgraduate students active in the fields of nanoscale thermal transport and silicon-based nanomaterials.


Non-Fourier Heat Conduction

Non-Fourier Heat Conduction

Author: Alexander I. Zhmakin

Publisher: Springer Nature

Published: 2023-07-01

Total Pages: 419

ISBN-13: 3031259734

DOWNLOAD EBOOK

This book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems.


Nanoscale Energy Transport and Harvesting

Nanoscale Energy Transport and Harvesting

Author: Zhang Gang

Publisher: CRC Press

Published: 2015-02-04

Total Pages: 222

ISBN-13: 9814463035

DOWNLOAD EBOOK

Energy transport and conversion in nanoscale structures is a rapidly expanding area of science. It looks set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic over the coming years. Owing to the difficulty in experimental measurement, computational simulation has becom


Statistical Mechanics of Hamiltonian Systems with Bounded Kinetic Terms

Statistical Mechanics of Hamiltonian Systems with Bounded Kinetic Terms

Author: Marco Baldovin

Publisher: Springer Nature

Published: 2020-08-20

Total Pages: 133

ISBN-13: 3030511707

DOWNLOAD EBOOK

Recent experimental evidence about the possibility of "absolute negative temperature" states in physical systems has triggered a stimulating debate about the consistency of such a concept from the point of view of Statistical Mechanics. It is not clear whether the usual results of this field can be safely extended to negative-temperature states; some authors even propose fundamental modifications to the Statistical Mechanics formalism, starting with the very definition of entropy, in order to avoid the occurrence of negative values of the temperature tout-court. The research presented in this thesis aims to shed some light on this controversial topic. To this end, a particular class of Hamiltonian systems with bounded kinetic terms, which can assume negative temperature, is extensively studied, both analytically and numerically. Equilibrium and out-of-equilibrium properties of this kind of system are investigated, reinforcing the overall picture that the introduction of negative temperature does not lead to any contradiction or paradox.