Thermal Stresses -- Advanced Theory and Applications

Thermal Stresses -- Advanced Theory and Applications

Author: Richard B. Hetnarski

Publisher: Springer Science & Business Media

Published: 2008-12-23

Total Pages: 579

ISBN-13: 1402092466

DOWNLOAD EBOOK

The authors are pleased to present Thermal Stresses – Advanced Theory and Applications. This book will serve a wide range of readers, in particular, gr- uate students, PhD candidates, professors, scientists, researchers in various industrial and government institutes, and engineers. Thus, the book should be considered not only as a graduate textbook, but also as a reference handbook to those working or interested in areas of Applied Mathematics, Continuum Mechanics, Stress Analysis, and Mechanical Design. In addition, the book p- vides extensive coverage of great many theoretical problems and numerous references to the literature. The ?eld of Thermal Stresses lies at the crossroads of Stress Analysis, T- ory of Elasticity, Thermodynamics, Heat Conduction Theory, and advanced methods of Applied Mathematics. Each of these areas is covered to the extend it is necessary. Therefore, the book is self-contained, so that the reader should not need to consult other sources while studying the topic. The book starts from basic concepts and principles, and these are developed to more advanced levels as the text progresses. Nevertheless, some basic preparation on the part of the reader in Classical Mechanics, Stress Analysis, and Mathematics, - cluding Vector and Cartesian Tensor Analysis is expected. While selecting material for the book, the authors made every e?ort to present both classical topics and methods, and modern, or more recent, dev- opments in the ?eld. The book comprises ten chapters.


Thermal Stresses—Advanced Theory and Applications

Thermal Stresses—Advanced Theory and Applications

Author: Richard B. Hetnarski

Publisher: Springer

Published: 2019-04-11

Total Pages: 657

ISBN-13: 3030104362

DOWNLOAD EBOOK

This is an advanced modern textbook on thermal stresses. It serves a wide range of readers, in particular, graduate and postgraduate students, scientists, researchers in various industrial and government institutes, and engineers working in mechanical, civil, and aerospace engineering. This volume covers diverse areas of applied mathematics, continuum mechanics, stress analysis, and mechanical design. This work treats a number of topics not presented in other books on thermal stresses, for example: theory of coupled and generalized thermoelasticity, finite and boundary element method in generalized thermoelasticity, thermal stresses in functionally graded structures, and thermal expansions of piping systems. The book starts from basic concepts and principles, and these are developed to more advanced levels as the text progresses. Nevertheless, some basic knowledge on the part of the reader is expected in classical mechanics, stress analysis, and mathematics, including vector and cartesian tensor analysis. This 2nd enhanced edition includes a new chapter on Thermally Induced Vibrations. The method of stiffness is added to Chapter 7. The variational principle for the Green-Lindsay and Green-Naghdi models have been added to Chapter 2 and equations of motion and compatibility equations in spherical coordinates to Chapter 3. Additional problems at the end of chapters were added.


Design for Thermal Stresses

Design for Thermal Stresses

Author: Randall F. Barron

Publisher: John Wiley & Sons

Published: 2011-09-07

Total Pages: 464

ISBN-13: 1118094530

DOWNLOAD EBOOK

The tools engineers need for effective thermal stress design Thermal stress concerns arise in many engineering situations, from aerospace structures to nuclear fuel rods to concrete highway slabs on a hot summer day. Having the tools to understand and alleviate these potential stresses is key for engineers in effectively executing a wide range of modern design tasks. Design for Thermal Stresses provides an accessible and balanced resource geared towards real-world applications. Presenting both the analysis and synthesis needed for accurate design, the book emphasizes key principles, techniques, and approaches for solving thermal stress problems. Moving from basic to advanced topics, chapters cover: Bars, beams, and trusses from a "strength of materials" perspective Plates, shells, and thick-walled vessels from a "theory of elasticity" perspective Thermal buckling in columns, beams, plates, and shells Written for students and working engineers, this book features numerous sample problems demonstrating concepts at work. In addition, appendices include important SI units, relevant material properties, and mathematical functions such as Bessel and Kelvin functions, as well as characteristics of matrices and determinants required for designing plates and shells. Suitable as either a working reference or an upper-level academic text, Design for Thermal Stresses gives students and professional engineers the information they need to meet today's thermal stress design challenges.


Thermal Stress Analysis of Composite Beams, Plates and Shells

Thermal Stress Analysis of Composite Beams, Plates and Shells

Author: Erasmo Carrera

Publisher: Academic Press

Published: 2016-11-25

Total Pages: 442

ISBN-13: 0124200931

DOWNLOAD EBOOK

Thermal Stress Analysis of Composite Beams, Plates and Shells: Computational Modelling and Applications presents classic and advanced thermal stress topics in a cutting-edge review of this critical area, tackling subjects that have little coverage in existing resources. It includes discussions of complex problems, such as multi-layered cases using modern advanced computational and vibrational methods. Authors Carrera and Fazzolari begin with a review of the fundamentals of thermoelasticity and thermal stress analysis relating to advanced structures and the basic mechanics of beams, plates, and shells, making the book a self-contained reference. More challenging topics are then addressed, including anisotropic thermal stress structures, static and dynamic responses of coupled and uncoupled thermoelastic problems, thermal buckling, and post-buckling behavior of thermally loaded structures, and thermal effects on panel flutter phenomena, amongst others. - Provides an overview of critical thermal stress theory and its relation to beams, plates, and shells, from classical concepts to the latest advanced theories - Appeals to those studying thermoelasticity, thermoelastics, stress analysis, multilayered structures, computational methods, buckling, static response, and dynamic response - Includes the authors' unified formulation (UF) theory, along with cutting-edge topics that receive little coverage in other references - Covers metallic and composite structures, including a complete analysis and sample problems of layered structures, considering both mesh and meshless methods - Presents a valuable resource for those working on thermal stress problems in mechanical, civil, and aerospace engineering settings


Theory of Thermal Stresses

Theory of Thermal Stresses

Author: Bruno A. Boley

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 610

ISBN-13: 0486143864

DOWNLOAD EBOOK

Highly regarded text presents detailed discussion of fundamental aspects of theory, background, problems with detailed solutions. Basics of thermoelasticity, heat transfer theory, thermal stress analysis, more. 1985 edition.


Encyclopedia of Thermal Stresses

Encyclopedia of Thermal Stresses

Author: Richard B. Hetnarski

Publisher: Springer

Published: 2013-12-04

Total Pages: 0

ISBN-13: 9789400727380

DOWNLOAD EBOOK

The Encyclopedia of Thermal Stresses is an important interdisciplinary reference work. In addition to topics on thermal stresses, it contains entries on related topics, such as the theory of elasticity, heat conduction, thermodynamics, appropriate topics on applied mathematics, and topics on numerical methods. The Encyclopedia is aimed at undergraduate and graduate students, researchers and engineers. It brings together well established knowledge and recently received results. All entries were prepared by leading experts from all over the world, and are presented in an easily accessible format. The work is lavishly illustrated, examples and applications are given where appropriate, ideas for further development abound, and the work will challenge many students and researchers to pursue new results of their own. This work can also serve as a one-stop resource for all who need succinct, concise, reliable and up to date information in short encyclopedic entries, while the extensive references will be of interest to those who need further information. For the coming decade, this is likely to remain the most extensive and authoritative work on Thermal Stresses.


Thermoelasticity

Thermoelasticity

Author: Witold Nowacki

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 579

ISBN-13: 1483162486

DOWNLOAD EBOOK

Thermoelasticity, Second Edition reviews advances in thermoelasticity and covers topics ranging from stationary problems of thermoelasticity to variational theorems of stationary thermoelasticity; stresses due to the action of a discontinuous temperature field in an infinite elastic body; the action of heat sources in the elastic space; and thermal inclusions in an infinite disc and semi-infinite disc. Three different sets of differential equations describing the fields of strain and temperature are presented. This book is comprised of 12 chapters and begins with a discussion on basic relations and equations of thermoelasticity. Thermoelasticity is treated as a synthesis of the theory of elasticity and the theory of heat conduction. Some particular cases of thermoelasticity are then investigated, including stationary problems, the theory of thermal stresses, and classical dynamic elasticity. Dynamic effects due to the action of a non-stationary temperature field are examined, along with plane harmonic waves in an elastic space and thermal stresses in plates, shells, and viscoelastic bodies. The final chapter focuses on micropolar thermoelasticity, magnetothermoelasticity, and thermopiezoelectricity. This monograph will be of interest to physicists and mechanical engineers.


Advanced Thermal Stress Analysis of Smart Materials and Structures

Advanced Thermal Stress Analysis of Smart Materials and Structures

Author: Zengtao Chen

Publisher: Springer Nature

Published: 2019-09-03

Total Pages: 313

ISBN-13: 3030252019

DOWNLOAD EBOOK

This is the first single volume monograph that systematically summarizes the recent progress in using non-Fourier heat conduction theories to deal with the multiphysical behaviour of smart materials and structures. The book contains six chapters and starts with a brief introduction to Fourier and non-Fourier heat conduction theories. Non-Fourier heat conduction theories include Cattaneo-Vernotte, dual-phase-lag (DPL), three-phase-lag (TPL), fractional phase-lag, and nonlocal phase-lag heat theories. Then, the fundamentals of thermal wave characteristics are introduced through reviewing the methods for solving non-Fourier heat conduction theories and by presenting transient heat transport in representative homogeneous and advanced heterogeneous materials. The book provides the fundamentals of smart materials and structures, including the background, application, and governing equations. In particular, functionally-graded smart structures made of piezoelectric, piezomagnetic, and magnetoelectroelastic materials are introduced as they represent the recent development in the industry. A series of uncoupled thermal stress analyses on one-dimensional structures are also included. The volume ends with coupled thermal stress analyses of one-dimensional homogenous and heterogeneous smart piezoelectric structures considering different coupled thermopiezoelectric theories. Last but not least, fracture behavior of smart structures under thermal disturbance is investigated and the authors propose directions for future research on the topic of multiphysical analysis of smart materials.


Theory of Elasticity and Thermal Stresses

Theory of Elasticity and Thermal Stresses

Author: M. Reza Eslami

Publisher: Springer Science & Business Media

Published: 2013-05-13

Total Pages: 787

ISBN-13: 9400763565

DOWNLOAD EBOOK

This book contains the elements of the theory and the problems of Elasticity and Thermal Stresses with full solutions. The emphasis is placed on problems and solutions and the book consists of four parts: one part is on The Mathematical Theory of Elasticity, two parts are on Thermal Stresses and one part is on Numerical Methods. The book is addressed to higher level undergraduate students, graduate students and engineers and it is an indispensable companion to all who study any of the books published earlier by the authors. This book links the three previously published books by the authors into one comprehensive entity.


Shell Structures: Theory and Applications Volume 4

Shell Structures: Theory and Applications Volume 4

Author: Wojciech Pietraszkiewicz

Publisher: CRC Press

Published: 2017-10-30

Total Pages: 574

ISBN-13: 135168048X

DOWNLOAD EBOOK

Shells are basic structural elements of modern technology and everyday life. Examples of shell structures in technology include automobile bodies, water and oil tanks, pipelines, silos, wind turbine towers, and nanotubes. Nature is full of living shells such as leaves of trees, blooming flowers, seashells, cell membranes or wings of insects. In the human body arteries, the eye shell, the diaphragm, the skin and the pericardium are all shells as well. Shell Structures: Theory and Applications, Volume 4 contains 132 contributions presented at the 11th Conference on Shell Structures: Theory and Applications (Gdansk, Poland, 11-13 October 2017). The papers reflect a wide spectrum of scientific and engineering problems from theoretical modelling through strength, stability and dynamic behaviour, numerical analyses, biomechanic applications up to engineering design of shell structures. Shell Structures: Theory and Applications, Volume 4 will be of interest to academics, researchers, designers and engineers dealing with modelling and analyses of shell structures. It may also provide supplementary reading to graduate students in Civil, Mechanical, Naval and Aerospace Engineering.