Theory of Lift

Theory of Lift

Author: G. D. McBain

Publisher: John Wiley & Sons

Published: 2012-05-22

Total Pages: 357

ISBN-13: 1118346289

DOWNLOAD EBOOK

Starting from a basic knowledge of mathematics and mechanics gained in standard foundation classes, Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave takes the reader conceptually through from the fundamental mechanics of lift to the stage of actually being able to make practical calculations and predictions of the coefficient of lift for realistic wing profile and planform geometries. The classical framework and methods of aerodynamics are covered in detail and the reader is shown how they may be used to develop simple yet powerful MATLAB or Octave programs that accurately predict and visualise the dynamics of real wing shapes, using lumped vortex, panel, and vortex lattice methods. This book contains all the mathematical development and formulae required in standard incompressible aerodynamics as well as dozens of small but complete working programs which can be put to use immediately using either the popular MATLAB or free Octave computional modelling packages. Key features: Synthesizes the classical foundations of aerodynamics with hands-on computation, emphasizing interactivity and visualization. Includes complete source code for all programs, all listings having been tested for compatibility with both MATLAB and Octave. Companion website (www.wiley.com/go/mcbain) hosting codes and solutions. Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave is an introductory text for graduate and senior undergraduate students on aeronautical and aerospace engineering courses and also forms a valuable reference for engineers and designers.


The Enigma of the Aerofoil

The Enigma of the Aerofoil

Author: David Bloor

Publisher: University of Chicago Press

Published: 2011-10-03

Total Pages: 562

ISBN-13: 0226060934

DOWNLOAD EBOOK

Why do aircraft fly? How do their wings support them? In the early years of aviation, there was an intense dispute between British and German experts over the question of why and how an aircraft wing provides lift. The British, under the leadership of the great Cambridge mathematical physicist Lord Rayleigh, produced highly elaborate investigations of the nature of discontinuous flow, while the Germans, following Ludwig Prandtl in Göttingen, relied on the tradition called “technical mechanics” to explain the flow of air around a wing. Much of the basis of modern aerodynamics emerged from this remarkable episode, yet it has never been subject to a detailed historical and sociological analysis. In The Enigma of the Aerofoil, David Bloor probes a neglected aspect of this important period in the history of aviation. Bloor draws upon papers by the participants—their restricted technical reports, meeting minutes, and personal correspondence, much of which has never before been published—and reveals the impact that the divergent mathematical traditions of Cambridge and Göttingen had on this great debate. Bloor also addresses why the British, even after discovering the failings of their own theory, remained resistant to the German circulation theory for more than a decade. The result is essential reading for anyone studying the history, philosophy, or sociology of science or technology—and for all those intrigued by flight.


Understanding Aerodynamics

Understanding Aerodynamics

Author: Doug McLean

Publisher:

Published: 2016

Total Pages: 550

ISBN-13: 9788126560318

DOWNLOAD EBOOK

"A real understanding of aerodynamics must go beyond mastering the mathematical formalism of the theories and come to grips with the physical cause-and-effect relationships that the theories represent. In addition to the math, which applies most directly at the local level, intuitive physical interpretations and explanations are required if we are to understand what happens at the flowfield level. This book aims to promote such physical understanding."--Page [4] of cover.


Gas Lift Theory and Practice, Including a Review of Petroleum Engineering Fundamentals

Gas Lift Theory and Practice, Including a Review of Petroleum Engineering Fundamentals

Author: Kermit E. Brown

Publisher:

Published: 1973

Total Pages: 930

ISBN-13:

DOWNLOAD EBOOK

The book begins with " a comprehensive review of petroleum engineering fundamentals, including conversion and dimensional analysis, liquid properties, reservoir mechanics as related to artificial lift and curve fitting. It also covers the entire spectrum of multiphase flow and flowing well. There is also a complete discussion of all types of gas lift valves and varieties of gas lift installations. The design of gas lift installations for pressure operated valves, liquid operated valves is covered in detail. A special section is devoted to compressor selection and the concluding section of the book presents methods of analyzing working lift installations."


Flight Theory and Aerodynamics

Flight Theory and Aerodynamics

Author: Charles E. Dole

Publisher: John Wiley & Sons

Published: 2016-11-21

Total Pages: 384

ISBN-13: 1119233402

DOWNLOAD EBOOK

The pilot's guide to aeronautics and the complex forces of flight Flight Theory and Aerodynamics is the essential pilot's guide to the physics of flight, designed specifically for those with limited engineering experience. From the basics of forces and vectors to craft-specific applications, this book explains the mechanics behind the pilot's everyday operational tasks. The discussion focuses on the concepts themselves, using only enough algebra and trigonometry to illustrate key concepts without getting bogged down in complex calculations, and then delves into the specific applications for jets, propeller crafts, and helicopters. This updated third edition includes new chapters on Flight Environment, Aircraft Structures, and UAS-UAV Flight Theory, with updated craft examples, component photos, and diagrams throughout. FAA-aligned questions and regulatory references help reinforce important concepts, and additional worked problems provide clarification on complex topics. Modern flight control systems are becoming more complex and more varied between aircrafts, making it essential for pilots to understand the aerodynamics of flight before they ever step into a cockpit. This book provides clear explanations and flight-specific examples of the physics every pilot must know. Review the basic physics of flight Understand the applications to specific types of aircraft Learn why takeoff and landing entail special considerations Examine the force concepts behind stability and control As a pilot, your job is to balance the effects of design, weight, load factors, and gravity during flight maneuvers, stalls, high- or low-speed flight, takeoff and landing, and more. As aircraft grow more complex and the controls become more involved, an intuitive grasp of the physics of flight is your most valuable tool for operational safety. Flight Theory and Aerodynamics is the essential resource every pilot needs for a clear understanding of the forces they control.


Theory of Wing Sections

Theory of Wing Sections

Author: Ira H. Abbott

Publisher: Courier Corporation

Published: 2012-04-26

Total Pages: 708

ISBN-13: 0486134997

DOWNLOAD EBOOK

Concise compilation of subsonic aerodynamic characteristics of NACA wing sections, plus description of theory. 350 pages of tables.


Theory and Design of Air Cushion Craft

Theory and Design of Air Cushion Craft

Author: Liang Yun

Publisher: Elsevier

Published: 2000-05-26

Total Pages: 647

ISBN-13: 0080519067

DOWNLOAD EBOOK

This definitive text describes the theory and design both of Air Cushion Vehicles (ACV) and Surface Effect Ships (SES). It begins by introducing hovercraft types and their development and application throughout the world in the last three decades, before going on to discuss the theoretical aspects of ACV and SES craft covering their hovering performance, dynamic trim over calm water, resistance, stability, manoeuvrability, skirt configuration and analysis of forces acting on the skirts, ACV and SES seakeeping, and the methodology of scaling aerodynamic and hydrodynamic forces acting on the ACV/SES from model test data. The latter chapters describe a design methodology, including design criteria and standard methods for estimating craft performance, lift system design, skirt design, hull structure, propulsion systems and power unit selection. Much technical information, data, and references to further work on hovercraft and SES design is provided. The book will be a useful reference to engineers, technicians, teachers, students (both undergraduate and postgraduate), operators etc. who are involved in ACV/SES research, design, construction and operation. - Guides the reader on how to perform machinery and systems selection within ACV and SES overall design - For teachers, students (both at under- and post-graduate level), engineers and technicians involved in ACV/SES


Flight Vehicle Aerodynamics

Flight Vehicle Aerodynamics

Author: Mark Drela

Publisher: MIT Press

Published: 2014-02-07

Total Pages: 304

ISBN-13: 0262526441

DOWNLOAD EBOOK

An overview of the physics, concepts, theories, and models underlying the discipline of aerodynamics. This book offers a general overview of the physics, concepts, theories, and models underlying the discipline of aerodynamics. A particular focus is the technique of velocity field representation and modeling via source and vorticity fields and via their sheet, filament, or point-singularity idealizations. These models provide an intuitive feel for aerodynamic flow-field behavior and are the basis of aerodynamic force analysis, drag decomposition, flow interference estimation, and other important applications. The models are applied to both low speed and high speed flows. Viscous flows are also covered, with a focus on understanding boundary layer behavior and its influence on aerodynamic flows. The book covers some topics in depth while offering introductions and summaries of others. Computational methods are indispensable for the practicing aerodynamicist, and the book covers several computational methods in detail, with a focus on vortex lattice and panel methods. The goal is to improve understanding of the physical models that underlie such methods. The book also covers the aerodynamic models that describe the forces and moments on maneuvering aircraft, and provides a good introduction to the concepts and methods used in flight dynamics. It also offers an introduction to unsteady flows and to the subject of wind tunnel measurements. The book is based on the MIT graduate-level course “Flight Vehicle Aerodynamics” and has been developed for use not only in conventional classrooms but also in a massive open online course (or MOOC) offered on the pioneering MOOC platform edX. It will also serve as a valuable reference for professionals in the field. The text assumes that the reader is well versed in basic physics and vector calculus, has had some exposure to basic fluid dynamics and aerodynamics, and is somewhat familiar with aerodynamics and aeronautics terminology.