Theory of Gas Discharge Plasma

Theory of Gas Discharge Plasma

Author: Boris M. Smirnov

Publisher: Springer

Published: 2014-11-17

Total Pages: 424

ISBN-13: 3319110659

DOWNLOAD EBOOK

This book presents the theory of gas discharge plasmas in a didactical way. It explains the processes in gas discharge plasmas. A gas discharge plasma is an ionized gas which is supported by an external electric field. Therefore its parameters are determined by processes in it. The properties of a gas discharge plasma depend on its gas component, types of external fields, their geometry and regimes of gas discharge. Fundamentals of a gas discharge plasma include elementary, radiative and transport processes which are included in its kinetics influence. They are represented in this book together with the analysis of simple gas discharges. These general principles are applied to stationary gas discharge plasmas of helium and argon. The analysis of such plasmas under certain conditions is theoretically determined by numerical plasma parameters for given regimes and conditions.


Introduction to Simulation Methods for Gas Discharge Plasmas

Introduction to Simulation Methods for Gas Discharge Plasmas

Author: Ismail Rafatov

Publisher: Myprint

Published: 2020-12-13

Total Pages: 124

ISBN-13: 9780750323611

DOWNLOAD EBOOK

Gas discharge plasma is the most common type of low-temperature plasma, with a large number of practical applications covering almost all areas of modern science and technology. This book is an introduction to the numerical modeling methods for gas discharge plasmas. It is intended to assist and direct graduate students and junior researchers, whose research activity deals with computational plasma physics. Topics covered include the essentials of basic modelling approaches (particle, fluid, and hybrid) for gas discharges, and the implementation of these methods with examples of glow (DC and RF) discharges. Numerical studies of nonlinear dynamics and formation of spatio-temporal patterns in gas discharge systems are also presented. Key Features Focuses solely on gas discharge plasmas Covers basic modelling techniques, including particle, fluid, and hybrid Provides details of applications and implementation for the considered methods Special emphasis is given to the applicability and reliability of different modelling techniques Provides specific examples of numerical simulations of the gas discharge plasmas


Introduction to Simulation Methods for Gas Discharge Plasmas

Introduction to Simulation Methods for Gas Discharge Plasmas

Author: Ismail Rafatov

Publisher:

Published: 2020

Total Pages: 0

ISBN-13: 9780750323604

DOWNLOAD EBOOK

Gas discharge plasma is the most common type of low-temperature plasma, with a large number of practical applications covering almost all areas of modern science and technology. This book is an introduction to the numerical modeling methods for gas discharge plasmas. It is intended to assist and direct graduate students and junior researchers, whose research activity deals with computational plasma physics. Topics covered include the essentials of basic modeling approaches (particle, fluid, and hybrid) for gas discharges, and the implementation of these methods with examples of glow (DC and RF) discharges. Numerical studies of nonlinear dynamics and formation of spatio-temporal patterns in gas discharge systems are also presented.


Introduction to Simulation Methods for Gas Discharge Plasmas

Introduction to Simulation Methods for Gas Discharge Plasmas

Author: Ismail Rafatov

Publisher:

Published: 2020

Total Pages:

ISBN-13: 9780750323598

DOWNLOAD EBOOK

Gas discharge plasma is the most common type of low-temperature plasma, with a large number of practical applications covering almost all areas of modern science and technology. This book is an introduction to the numerical modeling methods for gas discharge plasmas. It is intended to assist and direct graduate students and junior researchers, whose research activity deals with computational plasma physics. Topics covered include the essentials of basic modeling approaches (particle, fluid, and hybrid) for gas discharges, and the implementation of these methods with examples of glow (DC and RF) discharges. Numerical studies of nonlinear dynamics and formation of spatio-temporal patterns in gas discharge systems are also presented.


An Introduction to Gas Discharges

An Introduction to Gas Discharges

Author: A. M. Howatson

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 257

ISBN-13: 1483138364

DOWNLOAD EBOOK

An Introduction to Gas Discharges: Second Edition aims to provide a compact introduction to the subject of gas discharges, which continues to make both scientific and industrial progress. In this second edition, the author has made minor corrections, rewritten and expanded some sections, used SI units and modernized notions, in hopes of making the book more up to date. Included in the book is a short history of the subject, an introduction that enumerates the types of gas discharges, the fundamental processes, and then moves on to the more specific areas such as the breakdown, the self-sustaining discharge, equilibrium, plasma properties and measurements, and the technological applications of gas discharges. Concise and easy to understand, the text is for students and researchers who wish to learn the subject and prepare them for more advanced readings.


Gas Discharge Physics

Gas Discharge Physics

Author: Yuri P. Raizer

Publisher: Springer

Published: 2011-09-19

Total Pages: 0

ISBN-13: 9783642647604

DOWNLOAD EBOOK

Here is both a textbook for beginners and a handbook for specialists in plasma physics and gaseous electronics. The book contains much useful data: results of experiments and calculations, and reference data. It provides estimates of typical parameters and formulas in forms suitable for computations. Gas discharges of all important types are discussed: breakdown, glow, arc, spark and corona at radio frequency, microwave and optical frequences. The generation of plasma, and its application to high power gas lasers are treated in detail.


Theoretical and Computational Physics of Gas Discharge Phenomena

Theoretical and Computational Physics of Gas Discharge Phenomena

Author: Sergey T. Surzhikov

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-05-05

Total Pages: 549

ISBN-13: 3110648830

DOWNLOAD EBOOK

This work concerns the computational modelling of the dynamics of partially ionized gases, with emphasis on electrodischarge processes. Understanding gas discharges is fundamental for many processes in mechanics, manufacturing, materials science, and aerospace engineering. This second edition has been expanded to include the latest developments in the field, especially regarding the drift-diffusion model and rarefied hypersonic flow.


Physics of Gas Discharge Plasma (Selected Articles).

Physics of Gas Discharge Plasma (Selected Articles).

Author: V. N. Soshnikov

Publisher:

Published: 1971

Total Pages: 95

ISBN-13:

DOWNLOAD EBOOK

;Contents: Non-stationary vortical high-frequency discharge under atmospheric pressure in argon; The measurement of high-frequency electromagnetic fields in a stationary vortical discharge in the air at atmospheric pressure; The measurement of the parameters of plasma of a high-frequency pulsed vortical discharge in N2 and CO2; The theory of high frequency flare discharge in the air; Investigation of the erosion of the anode of a quasi-stationary coaxial electromagnetic plasma injector; Investigation of the erosion of the cathode of a quasi-stationary coaxial electromagnetic plasma injector.


Plasma Processing of Materials

Plasma Processing of Materials

Author: National Research Council

Publisher: National Academies Press

Published: 1991-02-01

Total Pages: 88

ISBN-13: 0309045975

DOWNLOAD EBOOK

Plasma processing of materials is a critical technology to several of the largest manufacturing industries in the worldâ€"electronics, aerospace, automotive, steel, biomedical, and toxic waste management. This book describes the relationship between plasma processes and the many industrial applications, examines in detail plasma processing in the electronics industry, highlights the scientific foundation underlying this technology, and discusses education issues in this multidisciplinary field. The committee recommends a coordinated, focused, and well-funded research program in this area that involves the university, federal laboratory, and industrial sectors of the community. It also points out that because plasma processing is an integral part of the infrastructure of so many American industries, it is important for both the economy and the national security that America maintain a strong leadership role in this technology.