The H-Function

The H-Function

Author: A.M. Mathai

Publisher: Springer Science & Business Media

Published: 2009-10-10

Total Pages: 276

ISBN-13: 1441909168

DOWNLOAD EBOOK

TheH-function or popularly known in the literature as Fox’sH-function has recently found applications in a large variety of problems connected with reaction, diffusion, reaction–diffusion, engineering and communication, fractional differ- tial and integral equations, many areas of theoretical physics, statistical distribution theory, etc. One of the standard books and most cited book on the topic is the 1978 book of Mathai and Saxena. Since then, the subject has grown a lot, mainly in the elds of applications. Due to popular demand, the authors were requested to - grade and bring out a revised edition of the 1978 book. It was decided to bring out a new book, mostly dealing with recent applications in statistical distributions, pa- way models, nonextensive statistical mechanics, astrophysics problems, fractional calculus, etc. and to make use of the expertise of Hans J. Haubold in astrophysics area also. It was decided to con ne the discussion toH-function of one scalar variable only. Matrix variable cases and many variable cases are not discussed in detail, but an insight into these areas is given. When going from one variable to many variables, there is nothing called a unique bivariate or multivariate analogue of a givenfunction. Whatever be the criteria used, there may be manydifferentfunctions quali ed to be bivariate or multivariate analogues of a given univariate function. Some of the bivariate and multivariateH-functions, currently in the literature, are also questioned by many authors.


Geometric Theory of Generalized Functions with Applications to General Relativity

Geometric Theory of Generalized Functions with Applications to General Relativity

Author: M. Grosser

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 517

ISBN-13: 9401598452

DOWNLOAD EBOOK

Over the past few years a certain shift of focus within the theory of algebras of generalized functions (in the sense of J. F. Colombeau) has taken place. Originating in infinite dimensional analysis and initially applied mainly to problems in nonlinear partial differential equations involving singularities, the theory has undergone a change both in in ternal structure and scope of applicability, due to a growing number of applications to questions of a more geometric nature. The present book is intended to provide an in-depth presentation of these develop ments comprising its structural aspects within the theory of generalized functions as well as a (selective but, as we hope, representative) set of applications. This main purpose of the book is accompanied by a number of sub ordinate goals which we were aiming at when arranging the material included here. First, despite the fact that by now several excellent mono graphs on Colombeau algebras are available, we have decided to give a self-contained introduction to the field in Chapter 1. Our motivation for this decision derives from two main features of our approach. On the one hand, in contrast to other treatments of the subject we base our intro duction to the field on the so-called special variant of the algebras, which makes many of the fundamental ideas of the field particularly transpar ent and at the same time facilitates and motivates the introduction of the more involved concepts treated later in the chapter.


The Implicit Function Theorem

The Implicit Function Theorem

Author: Steven G. Krantz

Publisher: Springer Science & Business Media

Published: 2012-11-26

Total Pages: 168

ISBN-13: 1461200598

DOWNLOAD EBOOK

The implicit function theorem is part of the bedrock of mathematical analysis and geometry. Finding its genesis in eighteenth century studies of real analytic functions and mechanics, the implicit and inverse function theorems have now blossomed into powerful tools in the theories of partial differential equations, differential geometry, and geometric analysis. There are many different forms of the implicit function theorem, including (i) the classical formulation for C^k functions, (ii) formulations in other function spaces, (iii) formulations for non- smooth functions, (iv) formulations for functions with degenerate Jacobian. Particularly powerful implicit function theorems, such as the Nash--Moser theorem, have been developed for specific applications (e.g., the imbedding of Riemannian manifolds). All of these topics, and many more, are treated in the present volume. The history of the implicit function theorem is a lively and complex story, and is intimately bound up with the development of fundamental ideas in analysis and geometry. This entire development, together with mathematical examples and proofs, is recounted for the first time here. It is an exciting tale, and it continues to evolve. "The Implicit Function Theorem" is an accessible and thorough treatment of implicit and inverse function theorems and their applications. It will be of interest to mathematicians, graduate/advanced undergraduate students, and to those who apply mathematics. The book unifies disparate ideas that have played an important role in modern mathematics. It serves to document and place in context a substantial body of mathematical ideas.


Boolean Functions

Boolean Functions

Author: Yves Crama

Publisher: Cambridge University Press

Published: 2011-05-16

Total Pages: 711

ISBN-13: 1139498630

DOWNLOAD EBOOK

Written by prominent experts in the field, this monograph provides the first comprehensive, unified presentation of the structural, algorithmic and applied aspects of the theory of Boolean functions. The book focuses on algebraic representations of Boolean functions, especially disjunctive and conjunctive normal form representations. This framework looks at the fundamental elements of the theory (Boolean equations and satisfiability problems, prime implicants and associated short representations, dualization), an in-depth study of special classes of Boolean functions (quadratic, Horn, shellable, regular, threshold, read-once functions and their characterization by functional equations) and two fruitful generalizations of the concept of Boolean functions (partially defined functions and pseudo-Boolean functions). Several topics are presented here in book form for the first time. Because of the depth and breadth and its emphasis on algorithms and applications, this monograph will have special appeal for researchers and graduate students in discrete mathematics, operations research, computer science, engineering and economics.


The Theory and Applications of Statistical Interference Functions

The Theory and Applications of Statistical Interference Functions

Author: D.L. McLeish

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 131

ISBN-13: 1461238722

DOWNLOAD EBOOK

This monograph arose out of a desire to develop an approach to statistical infer ence that would be both comprehensive in its treatment of statistical principles and sufficiently powerful to be applicable to a variety of important practical problems. In the latter category, the problems of inference for stochastic processes (which arise com monly in engineering and biological applications) come to mind. Classes of estimating functions seem to be promising in this respect. The monograph examines some of the consequences of extending standard concepts of ancillarity, sufficiency and complete ness into this setting. The reader should note that the development is mathematically "mature" in its use of Hilbert space methods but not, we believe, mathematically difficult. This is in keeping with our desire to construct a theory that is rich in statistical tools for infer ence without the difficulties found in modern developments, such as likelihood analysis of stochastic processes or higher order methods, to name but two. The fundamental notions of orthogonality and projection are accessible to a good undergraduate or beginning graduate student. We hope that the monograph will serve the purpose of enriching the methods available to statisticians of various interests.


Singular Integral Equations

Singular Integral Equations

Author: N. I. Muskhelishvili

Publisher: Courier Corporation

Published: 2013-02-19

Total Pages: 466

ISBN-13: 0486145069

DOWNLOAD EBOOK

DIVHigh-level treatment of one-dimensional singular integral equations covers Holder Condition, Hilbert and Riemann-Hilbert problems, Dirichlet problem, more. 1953 edition. /div


Methods of the Theory of Functions of Many Complex Variables

Methods of the Theory of Functions of Many Complex Variables

Author: Vasiliy Sergeyevich Vladimirov

Publisher: Courier Corporation

Published: 2007-01-01

Total Pages: 370

ISBN-13: 0486458121

DOWNLOAD EBOOK

This systematic exposition outlines the fundamentals of the theory of single sheeted domains of holomorphy. It further illustrates applications to quantum field theory, the theory of functions, and differential equations with constant coefficients. Students of quantum field theory will find this text of particular value. The text begins with an introduction that defines the basic concepts and elementary propositions, along with the more salient facts from the theory of functions of real variables and the theory of generalized functions. Subsequent chapters address the theory of plurisubharmonic functions and pseudoconvex domains, along with characteristics of domains of holomorphy. These explorations are further examined in terms of four types of domains: multiple-circular, tubular, semitubular, and Hartogs' domains. Surveys of integral representations focus on the Martinelli-Bochner, Bergman-Weil, and Bochner representations. The final chapter is devoted to applications, particularly those involved in field theory. It employs the theory of generalized functions, along with the theory of functions of several complex variables.


Uniqueness Theory of Meromorphic Functions

Uniqueness Theory of Meromorphic Functions

Author: Chung-Chun Yang

Publisher: Springer Science & Business Media

Published: 2004-10-04

Total Pages: 590

ISBN-13: 9781402014482

DOWNLOAD EBOOK

This book is the first monograph in the field of uniqueness theory of meromorphic functions dealing with conditions under which there is the unique function satisfying given hypotheses. Developed by R. Nevanlinna, a Finnish mathematician, early in the 1920's, research in the field has developed rapidly over the past three decades with a great deal of fruitful results. This book systematically summarizes the most important results in the field, including many of the authors' own previously unpublished results. In addition, useful skills and simple proofs are introduced. This book is suitable for higher level and graduate students who have a basic grounding in complex analysis, but will also appeal to researchers in mathematics.


Theory and Applications of Special Functions

Theory and Applications of Special Functions

Author: Mourad E. H. Ismail

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 497

ISBN-13: 0387242333

DOWNLOAD EBOOK

A collection of articles on various aspects of q-series and special functions dedicated to Mizan Rahman. It also includes an article by Askey, Ismail, and Koelink on Rahman’s mathematical contributions and how they influenced the recent upsurge in the subject.


Mathematical Analysis, Approximation Theory and Their Applications

Mathematical Analysis, Approximation Theory and Their Applications

Author: Themistocles M. Rassias

Publisher: Springer

Published: 2016-06-03

Total Pages: 745

ISBN-13: 3319312812

DOWNLOAD EBOOK

Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.