Theory of Electron—Atom Collisions

Theory of Electron—Atom Collisions

Author: Philip G. Burke

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 264

ISBN-13: 1489915672

DOWNLOAD EBOOK

The authors aim to hone the theory of electron-atom and electron-ion collisions by developing mathematical equations and comparing their results to the wealth of recent experimental data. This first of three parts focuses on potential scattering, and will serve as an introduction to many of the concepts covered in Parts II and III. As these processes occur in so many of the physical sciences, researchers in astrophysics, atmospheric physics, plasma physics, and laser physics will all benefit from the monograph.


Introduction to the Theory of Collisions of Electrons with Atoms and Molecules

Introduction to the Theory of Collisions of Electrons with Atoms and Molecules

Author: S.P. Khare

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 362

ISBN-13: 1461506115

DOWNLOAD EBOOK

An understanding of the collisions between micro particles is of great importance for the number of fields belonging to physics, chemistry, astrophysics, biophysics etc. The present book, a theory for electron-atom and molecule collisions is developed using non-relativistic quantum mechanics in a systematic and lucid manner. The scattering theory is an essential part of the quantum mechanics course of all universities. During the last 30 years, the author has lectured on the topics presented in this book (collisions physics, photon-atom collisions, electron-atom and electron-molecule collisions, "electron-photon delayed coincidence technique", etc.) at many institutions including Wayne State University, Detroit, MI, The University of Western Ontario, Canada, and The Meerut University, India. The present book is the outcome of those lectures and is written to serve as a textbook for post-graduate and pre-PhD students and as a reference book for researchers.


Potential Scattering in Atomic Physics

Potential Scattering in Atomic Physics

Author: P. G. Burke

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 137

ISBN-13: 1461341124

DOWNLOAD EBOOK

This monograph was written while the author was a visitor at the Center for Theoretical Studies at the University of Miami, Coral Gables, Florida. The author wishes to thank Professor Behram Kursunoglu for the warm hospitality extended to him at the Center and to acknowledge the many interesting and fruitful discussions which he had with other visitors and with members of staff at the Center. Philip G. Burke v Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Scattering by a Short-Range Potential. . . . . . . . . . . . . . . 5 3. Scattering by a Coulomb Potential. . . . . . . . . . . . . . . . . . 11 4. Scattering by a Spin-Orbit Potential . . . . . . . . . . . . . . " 17 5. Scattering by One-Electron Atoms. . . . . . . . . . . . . . . . . . 23 6. Low-Energy Effective-Range Theory. . . . . . . . . . . . . . . . 39 7. Bound States and Resonances. . . . . . . . . . . . . . . . . . . . . . 55 8. Variational Methods and Bound Principles. . . . . . . . . . 75 9. Integral Equation Methods and the Born Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 10. Semiclassical and Eikonal Methods . . . . . . . . . . . . . . . . . 117 Appendix. The Coupling of Angular Momenta . . . . . . . . . . . 127 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 vii 1 Introduction In this monograph we study the scattering of a particle by a potential field with particular reference to elastic electron scat tering by a neutral atom or by an ion. This subject is clearly of interest in its own right as a branch of quantum mechanical scattering theory. However, it also serves as an introduction to many of the basic theoretical concepts which are used in inelastic electron scattering and ionization. Consequently this mono graph can be viewed as an introduction to texts where these subjects are treated.


Collisions of Electrons with Atoms and Molecules

Collisions of Electrons with Atoms and Molecules

Author: G.F. Drukarev

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 252

ISBN-13: 1461317797

DOWNLOAD EBOOK

This book is a short outline of the present state of the theory of electron collisions with atomic particles - atoms, molecules and ions. It is addressed to those who by nature of their work need detailed information about the cross sections of various processes of electron collisions with atomic particles: experimentalists working in plasma physics, optics, quantum electronics, atmospheric and space physics, 'etc. Some of the cross sections have been measured. But in many important cases the only source of information is theoretical calcu lation. The numerous theoretical papers dealing with electronic collision processes contain various approximations. The inter relation between them and the level of their accuracy is often diffi cult to understand without a systematic study of the theory of atomic collisions, not to mention that theoretical considerations are necessary for the consistent interpretation of experimental results. The main constituents of the book are: 1. General theory with special emphasis on the topics most impor tant for understanding and discussing electron collisions with atomic particles.


Topics in Atomic Collision Theory

Topics in Atomic Collision Theory

Author: Sydney Geltman

Publisher: Academic Press

Published: 2013-10-22

Total Pages: 256

ISBN-13: 148327702X

DOWNLOAD EBOOK

Topics in Atomic Collision Theory originated in a course of graduate lectures given at the University of Colorado and at University College in London. It is recommended for students in physics and related fields who are interested in the application of quantum scattering theory to low-energy atomic collision phenomena. No attention is given to the electromagnetic, nuclear, or elementary particle domains. The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessarily in the order of decreasing mathematical tractability. The topics and methods selected were those which contributed most significantly to the understanding of the physics and the calculation of reliable cross sections. The attempt has been made to treat each of the sections in a complete and self-contained manner. The limited scope of this book has unfortunately made it necessary to omit discussion of many promising methods.


Electron-Atom Collisions

Electron-Atom Collisions

Author: Ian E. McCarthy

Publisher: Cambridge University Press

Published: 1995-03-30

Total Pages: 344

ISBN-13: 0521413591

DOWNLOAD EBOOK

This book is a comprehensive introduction to theory and experiment in electron-atom collisions.


Electron–Atom Collisions

Electron–Atom Collisions

Author: Maurizio Dapor

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-03-07

Total Pages: 194

ISBN-13: 3110675374

DOWNLOAD EBOOK

Electron collisions with atoms, ions, and molecules have been investigated since the earliest years of the last century because of their pervasiveness and importance in fields ranging from astrophysics and plasma physics to atmospheric and condensed matter physics. Written in an accessible yet rigorous style, this book introduces the theory of electron-atom scattering in a quantum-relativistic framework.


Electron-Molecule Collisions

Electron-Molecule Collisions

Author: Isao Shimamura

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 578

ISBN-13: 1461323576

DOWNLOAD EBOOK

Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiation physics, the physics of gas discharges, magnetohydrodynamic power generation, and so on. This book aims at introducing the reader to the problem of electron molecule collisions, elucidating the physics behind the phenomena, and review ing, to some extent, up-to-date important results. This book should be appropri ate for graduate reading in physics and chemistry. We also believe that investi gators in atomic and molecular physics will benefit much from this book.


Electron Collisions with Molecules, Clusters, and Surfaces

Electron Collisions with Molecules, Clusters, and Surfaces

Author: H. Ehrhardt

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 265

ISBN-13: 1489914897

DOWNLOAD EBOOK

This volume contains the invited papers and selected contributed papers presented at the biennial International Symposium on ELECTRON COLLISIONS WITH MOLECULES, CLUSTERS AND SURF ACES held at Royal Holloway, University of London from 29th to 30th July, 1993. This Symposium was a Satellite Meeting of the XVIII International Conference on the Physics of Electronic and Atomic Collisions (ICPEAC) and follows a 16 year tradition of Satellite Conferences in related areas of collisions held in association with previous ICPEAC's. In the past each of these electron -molecule symposia covered the broad field of electron-molecule scattering at rather low energies, but also included hot topics. This time as well as covering the whole field, well defined electron collisions with clusters and with particles in the complex potential of a surface were emphasized. Not many details are known about such collisions, although they become more and more important in surface characterisation, plasma-wall interactions, electron induced desorption and reorganisation of adsorbed particles. Recently, much work, theoretical and experimental, has been devoted to electron collisions with rather large carbon, silicon and halogen containing molecules. These problems are of relevance in plasma assisted thin film formation and etching of surfaces and can now be approached with advanced theoretical methods and experimental equipment.