Theory of Gearing

Theory of Gearing

Author: Stephen P. Radzevich

Publisher: CRC Press

Published: 2018-05-15

Total Pages: 898

ISBN-13: 0429999178

DOWNLOAD EBOOK

Written by a leading expert, Theory of Gearing: Kinematics, Geometry, and Synthesis, Second Edition is intended for engineers and researchers in the field of gear design, gear production, gear inspection, and application of gears. It focuses on the scientific theory of gearing, in all its aspects, and its application to new gear types and designs.


Nonlinear Vibrations of Cantilever Beams and Plates

Nonlinear Vibrations of Cantilever Beams and Plates

Author: Mohammad Amin Rashidifar

Publisher: Anchor Academic Publishing (aap_verlag)

Published: 2015-05-12

Total Pages: 143

ISBN-13: 3954899205

DOWNLOAD EBOOK

Many engineering problems can be solved using a linear approximation. In the Finite Element Analysis (FEA) the set of equations, describing the structural behaviour is then linear K d = F (1.1) In this matrix equation, K is the stiffness matrix of the structure, d is the nodal displacements vector and F is the external nodal force vector. Characteristics of linear problems is that the displacements are proportional to the loads, the stiffness of the structure is independent on the value of the load level. Though behaviour of real structures is nonlinear, e.g. displacements are not proportional to the loads; nonlinearities are usually unimportant and may be neglected in most practical problems.


Robotic Systems: Concepts, Methodologies, Tools, and Applications

Robotic Systems: Concepts, Methodologies, Tools, and Applications

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2020-01-03

Total Pages: 2075

ISBN-13: 1799817555

DOWNLOAD EBOOK

Through expanded intelligence, the use of robotics has fundamentally transformed a variety of fields, including manufacturing, aerospace, medicine, social services, and agriculture. Continued research on robotic design is critical to solving various dynamic obstacles individuals, enterprises, and humanity at large face on a daily basis. Robotic Systems: Concepts, Methodologies, Tools, and Applications is a vital reference source that delves into the current issues, methodologies, and trends relating to advanced robotic technology in the modern world. Highlighting a range of topics such as mechatronics, cybernetics, and human-computer interaction, this multi-volume book is ideally designed for robotics engineers, mechanical engineers, robotics technicians, operators, software engineers, designers, programmers, industry professionals, researchers, students, academicians, and computer practitioners seeking current research on developing innovative ideas for intelligent and autonomous robotics systems.


Principles of Aeroelasticity

Principles of Aeroelasticity

Author: Raymond L. Bisplinghoff

Publisher: Courier Corporation

Published: 2013-10-17

Total Pages: 545

ISBN-13: 0486783162

DOWNLOAD EBOOK

Geared toward professional engineers, this volume will be helpful for students, too. Topics include methods of constructing static and dynamic equations, heated elastic solids, forms of aerodynamic operators, structural operators, and more. 1962 edition.


Nanotribology and Nanomechanics

Nanotribology and Nanomechanics

Author: Bharat Bhushan

Publisher: Springer

Published: 2017-04-05

Total Pages: 930

ISBN-13: 3319514334

DOWNLOAD EBOOK

This textbook and comprehensive reference source and serves as a timely, practical introduction to the principles of nanotribology and nanomechanics. This 4th edition has been completely revised and updated, concentrating on the key measurement techniques, their applications, and theoretical modeling of interfaces. It provides condensed knowledge of the field from the mechanics and materials science perspectives to graduate students, research workers, and practicing engineers.


Contact and Fracture Mechanics

Contact and Fracture Mechanics

Author: Pranav H. Darji

Publisher: BoD – Books on Demand

Published: 2018-05-30

Total Pages: 288

ISBN-13: 1789231582

DOWNLOAD EBOOK

This book contains two sections: Chapters 1-7 deal with contact mechanics, and Chapters 8-13 deal with fracture mechanics. The different contributions of this book will cover the various advanced topics of research. It provides some needed background with respect to contact mechanics, fracture mechanics and the use of finite element methods in both. All the covered chapters of this book are of a theoretical and applied nature, suitable for the researchers of engineering, physics, applied mathematics and mechanics with an interest in computer simulation of contact and fracture problems.


Elastic And Inelastic Stress Analysis

Elastic And Inelastic Stress Analysis

Author: Irving H Shames

Publisher: CRC Press

Published: 1997-02-01

Total Pages: 740

ISBN-13: 1560326867

DOWNLOAD EBOOK

Presents certain key aspects of inelastic solid mechanics centered around viscoelasticity, creep, viscoplasticity, and plasticity. It is divided into three parts consisting of the fundamentals of elasticity, useful constitutive laws, and applications to simple structural members, providing extended treatment of basic problems in static structural mechanics, including elastic and inelastic effects. It contains worked-out examples and end-of-chapter problems.


Coaxial-tip Piezoresistive Cantilever Probes for High-resolution Scanning Gate Microscopy

Coaxial-tip Piezoresistive Cantilever Probes for High-resolution Scanning Gate Microscopy

Author: Nahid Harjee

Publisher: Stanford University

Published: 2011

Total Pages: 209

ISBN-13:

DOWNLOAD EBOOK

Scanning probe techniques provide a wealth of information about the nanoscale properties of materials and devices. In scanning gate microscopy (SGM), the current through a sample is recorded as a sharp, conductive tip that modifies the local electrostatic potential is scanned above the surface. SGM has been used to map current flow, carrier density and potential barriers. Existing, unshielded SGM probes have significant stray capacitance, resulting in poor lateral resolution when they are used to image nanostructures. Thus, there is a need for a probe that minimizes stray capacitance to produce highly-localized electric fields. This probe must also self-sense topography for tip-sample alignment, as the conventional laser-based detection methods can disturb photosensitive samples. In this thesis, we present a new scanning probe that integrates a coaxial tip on a piezoresistive cantilever. The coaxial tip is comprised of a heavily-doped silicon inner conductor and an aluminum outer shield, separated by a silicon dioxide insulator. By shielding the inner conductor up to the tip apex, this tip configuration minimizes stray capacitance to produce narrow electrostatic potential profiles. A piezoresistor is embedded at the root of the cantilever and enables electrical measurement of deflection at the free end. Scanning gate microscopy is commonly performed at room temperature (room-T) and low temperature (low-T). We discuss the design of piezoresistive cantilevers for atomic force microscopy (AFM) under both temperature regimes. We introduce a numerical optimizer that we used to identify 12 cantilever designs for use at room-T and low-T for hard, semiconductor samples and soft, biological samples. We show the results of finite-element analysis used to predict the electrostatic potential profiles produced by unshielded and coaxial tips. We investigate how the full-width at half-maximum (FWHM) of the coaxial tip perturbation varies with lift height and tip geometry. We discuss the development of a 7-mask process to fabricate scanning probes with both a coaxial tip and a piezoresistor. We compare two methods to create sub-micron tip apertures with focused ion beam milling, and provide a recipe that can repeatably produce openings with a radius of 30 nm. We describe the characterization of the piezoresistive cantilevers at room-T on a commercial AFM and at low-T on a home-built cryogenic scanning system. Finally, we provide images of the potential profile from the coaxial tip, obtained using a quantum point contact at low-T. In a measurement bandwidth from 1 Hz to 10 kHz, our scanning probes achieve a vertical displacement resolution of 2.8 A at 293 K and 82 A at 2 K, where the low temperature performance is limited by amplifier noise. When the coaxial tip is 100 nm above a sample, the FWHM of the electrostatic potential profile it produces at the surface is less than 240 nm, representing a 2.3x improvement in the lateral resolution of SGM over unshielded tips.