Theory, Application, and Implementation of Monte Carlo Method in Science and Technology
Author:
Publisher:
Published: 2019
Total Pages:
ISBN-13: 9781789855463
DOWNLOAD EBOOKRead and Download eBook Full
Author:
Publisher:
Published: 2019
Total Pages:
ISBN-13: 9781789855463
DOWNLOAD EBOOKAuthor: Pooneh Saidi Bidokhti
Publisher: BoD – Books on Demand
Published: 2019-12-18
Total Pages: 189
ISBN-13: 1789855454
DOWNLOAD EBOOKThe Monte Carlo method is a numerical technique to model the probability of all possible outcomes in a process that cannot easily be predicted due to the interference of random variables. It is a technique used to understand the impact of risk, uncertainty, and ambiguity in forecasting models. However, this technique is complicated by the amount of computer time required to achieve sufficient precision in the simulations and evaluate their accuracy. This book discusses the general principles of the Monte Carlo method with an emphasis on techniques to decrease simulation time and increase accuracy.
Author: Alireza Haghighat
Publisher: CRC Press
Published: 2020-08-09
Total Pages: 279
ISBN-13: 042958220X
DOWNLOAD EBOOKFully updated with the latest developments in the eigenvalue Monte Carlo calculations and automatic variance reduction techniques and containing an entirely new chapter on fission matrix and alternative hybrid techniques. This second edition explores the uses of the Monte Carlo method for real-world applications, explaining its concepts and limitations. Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, it is an ideal textbook and practical guide for nuclear engineers and scientists looking into the applications of the Monte Carlo method, in addition to students in physics and engineering, and those engaged in the advancement of the Monte Carlo methods. Describes general and particle-transport-specific automated variance reduction techniques Presents Monte Carlo particle transport eigenvalue issues and methodologies to address these issues Presents detailed derivation of existing and advanced formulations and algorithms with real-world examples from the author’s research activities
Author: Christian Robert
Publisher: Springer Science & Business Media
Published: 2010
Total Pages: 297
ISBN-13: 1441915753
DOWNLOAD EBOOKThis book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.
Author: Jun S. Liu
Publisher: Springer Science & Business Media
Published: 2013-11-11
Total Pages: 350
ISBN-13: 0387763716
DOWNLOAD EBOOKThis book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared. Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians. It can also be used as a textbook for a graduate-level course on Monte Carlo methods.
Author: Ahmed M. Maghraby
Publisher: BoD – Books on Demand
Published: 2020-12-23
Total Pages: 163
ISBN-13: 1839628847
DOWNLOAD EBOOKIonizing radiation can be found everywhere; in the Earth, inside buildings, in space, in the food we eat, and even inside our bodies. It is of much importance to know more about radiation and how it can improve human life, including how to make use of it and how to avoid its harm. This book covers several topics on ionizing radiation to enrich our knowledge about its applications and effects.
Author: Mark Chang
Publisher: CRC Press
Published: 2010-09-29
Total Pages: 566
ISBN-13: 1439835934
DOWNLOAD EBOOKHelping you become a creative, logical thinker and skillful "simulator," Monte Carlo Simulation for the Pharmaceutical Industry: Concepts, Algorithms, and Case Studies provides broad coverage of the entire drug development process, from drug discovery to preclinical and clinical trial aspects to commercialization. It presents the theories and metho
Author: Johan Dahlin
Publisher: Linköping University Electronic Press
Published: 2016-03-22
Total Pages: 139
ISBN-13: 9176857972
DOWNLOAD EBOOKMaking decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). That is, strategies for reducing the computational effort while keeping or improving the accuracy. A major part of the thesis is devoted to proposing such strategies for the MCMC method known as the particle Metropolis-Hastings (PMH) algorithm. We investigate two strategies: (i) introducing estimates of the gradient and Hessian of the target to better tailor the algorithm to the problem and (ii) introducing a positive correlation between the point-wise estimates of the target. Furthermore, we propose an algorithm based on the combination of SMC and Gaussian process optimisation, which can provide reasonable estimates of the posterior but with a significant decrease in computational effort compared with PMH. Moreover, we explore the use of sparseness priors for approximate inference in over-parametrised mixed effects models and autoregressive processes. This can potentially be a practical strategy for inference in the big data era. Finally, we propose a general method for increasing the accuracy of the parameter estimates in non-linear state space models by applying a designed input signal. Borde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.
Author: David P. Landau
Publisher: Cambridge University Press
Published: 2000-08-17
Total Pages: 402
ISBN-13: 9780521653664
DOWNLOAD EBOOKThis book describes all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics, as well as in related fields, such as polymer science and lattice gauge theory. The authors give a succinct overview of simple sampling methods and develop the importance sampling method. In addition they introduce quantum Monte Carlo methods, aspects of simulations of growth phenomena and other systems far from equilibrium, and the Monte Carlo Renormalization Group approach to critical phenomena. The book includes many applications, examples, and current references, and exercises to help the reader.
Author: Tadeusz Michalowski
Publisher: BoD – Books on Demand
Published: 2011-09-09
Total Pages: 526
ISBN-13: 9533077085
DOWNLOAD EBOOKThe book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest.