Theory and Practice of Geometric Modeling

Theory and Practice of Geometric Modeling

Author: Wolfgang Straßer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 534

ISBN-13: 3642615422

DOWNLOAD EBOOK

This book is a result of the lectures and discussions during the conference "Theory and Practice of Geometric Modeling". The event has been organized by the Wilhelm-Schickard-Institut fiir Informatik, Universitat Tiibingen and took place at the Heinrich-Fabri-Institut in Blaubeuren from October 3 to 7, 1988. The conference brought together leading experts from academic and industrial research institutions, CAD system developers and experien ced users to exchange their ideas and to discuss new concepts and future directions in geometric modeling. The main intention has been to bridge the gap between theoretical results, performance of existing CAD systems and the real problems of users. The contents is structured in five parts: A Algorithmic Aspects B Surface Intersection, Blending, Ray Tracing C Geometric Tools D Different Representation Schemes in Solid Modeling E Product Modeling in High Level Specifications The material presented in this book reflects the current state of the art in geometric modeling and should therefore be of interest not only to university and industry researchers, but also to system developers and practitioners who wish to keep up to date on recent advances and new concepts in this rapidly expanding field. The editors express their sincere appreciation to the contributing authors, and to the members of the program committee, W. Boehm, J. Hoschek, A. Massabo, H. Nowacki, M. Pratt, J. Rossignac, T. Sederberg and W. Tiller, for their close cooperation and their time and effort that made the conference and this book a success.


Geometric Modeling: Theory and Practice

Geometric Modeling: Theory and Practice

Author: Wolfgang Straßer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 441

ISBN-13: 3642606075

DOWNLOAD EBOOK

The Blaubeuren Conference "Theory and Practice of Geometric Modeling" has become a meeting place for leading experts from industrial and academic research institutions, CAD system developers and experienced users to exchange new ideas and to discuss new concepts and future directions in geometric modeling. The relaxed and calm atmosphere of the Heinrich-Fabri-Institute in Blaubeuren provides the appropriate environment for profound and engaged discussions that are not equally possible on other occasions. Real problems from current industrial projects as well as theoretical issues are addressed on a high scientific level. This book is the result of the lectures and discussions during the conference which took place from October 14th to 18th, 1996. The contents is structured in 4 parts: Mathematical Tools Representations Systems Automated Assembly. The editors express their sincere appreciation to the contributing authors, and to the members of the program committee for their cooperation, the careful reviewing and their active participation that made the conference and this book a success.


Handbook of Conceptual Modeling

Handbook of Conceptual Modeling

Author: David W. Embley

Publisher: Springer Science & Business Media

Published: 2012-04-23

Total Pages: 597

ISBN-13: 364215865X

DOWNLOAD EBOOK

Conceptual modeling is about describing the semantics of software applications at a high level of abstraction in terms of structure, behavior, and user interaction. Embley and Thalheim start with a manifesto stating that the dream of developing information systems strictly by conceptual modeling – as expressed in the phrase “the model is the code” – is becoming reality. The subsequent contributions written by leading researchers in the field support the manifesto's assertions, showing not only how to abstractly model complex information systems but also how to formalize abstract specifications in ways that let developers complete programming tasks within the conceptual model itself. They are grouped into sections on programming with conceptual models, structure modeling, process modeling, user interface modeling, and special challenge areas such as conceptual geometric modeling, information integration, and biological conceptual modeling. The Handbook of Conceptual Modeling collects in a single volume many of the best conceptual-modeling ideas, techniques, and practices as well as the challenges that drive research in the field. Thus it is much more than a traditional handbook for advanced professionals, as it also provides both a firm foundation for the field of conceptual modeling, and points researchers and graduate students towards interesting challenges and paths for how to contribute to this fundamental field of computer science.


Statistical Optimization for Geometric Computation

Statistical Optimization for Geometric Computation

Author: Kenichi Kanatani

Publisher: Courier Corporation

Published: 2005-07-26

Total Pages: 548

ISBN-13: 0486443086

DOWNLOAD EBOOK

This text for graduate students discusses the mathematical foundations of statistical inference for building three-dimensional models from image and sensor data that contain noise--a task involving autonomous robots guided by video cameras and sensors. The text employs a theoretical accuracy for the optimization procedure, which maximizes the reliability of estimations based on noise data. The numerous mathematical prerequisites for developing the theories are explained systematically in separate chapters. These methods range from linear algebra, optimization, and geometry to a detailed statistical theory of geometric patterns, fitting estimates, and model selection. In addition, examples drawn from both synthetic and real data demonstrate the insufficiencies of conventional procedures and the improvements in accuracy that result from the use of optimal methods.


Building Information Modeling

Building Information Modeling

Author: André Borrmann

Publisher: Springer

Published: 2018-09-19

Total Pages: 582

ISBN-13: 3319928627

DOWNLOAD EBOOK

Building Information Modeling (BIM) refers to the consistent and continuous use of digital information throughout the entire lifecycle of a built facility, including its design, construction and operation. In order to exploit BIM methods to their full potential, a fundamental grasp of their key principles and applications is essential. Accordingly, this book combines discussions of theoretical foundations with reports from the industry on currently applied best practices. The book’s content is divided into six parts: Part I discusses the technological basics of BIM and addresses computational methods for the geometric and semantic modeling of buildings, as well as methods for process modeling. Next, Part II covers the important aspect of the interoperability of BIM software products and describes in detail the standardized data format Industry Foundation Classes. It presents the different classification systems, discusses the data format CityGML for describing 3D city models and COBie for handing over data to clients, and also provides an overview of BIM programming tools and interfaces. Part III is dedicated to the philosophy, organization and technical implementation of BIM-based collaboration, and discusses the impact on legal issues including construction contracts. In turn, Part IV covers a wide range of BIM use cases in the different lifecycle phases of a built facility, including the use of BIM for design coordination, structural analysis, energy analysis, code compliance checking, quantity take-off, prefabrication, progress monitoring and operation. In Part V, a number of design and construction companies report on the current state of BIM adoption in connection with actual BIM projects, and discuss the approach pursued for the shift toward BIM, including the hurdles taken. Lastly, Part VI summarizes the book’s content and provides an outlook on future developments. The book was written both for professionals using or programming such tools, and for students in Architecture and Construction Engineering programs.


Shape Interrogation for Computer Aided Design and Manufacturing

Shape Interrogation for Computer Aided Design and Manufacturing

Author: Nicholas M. Patrikalakis

Publisher: Springer Science & Business Media

Published: 2002-02-14

Total Pages: 428

ISBN-13: 9783540424543

DOWNLOAD EBOOK

Shape interrogation is the process of extraction of information from a geometric model. It is a fundamental component of Computer Aided Design and Manufacturing (CAD/CAM) systems. The authors focus on shape interrogation of geometric models bounded by free-form surfaces. Free-form surfaces, also called sculptured surfaces, are widely used in the bodies of ships, automobiles and aircraft, which have both functionality and attractive shape requirements. Many electronic devices as well as consumer products are designed with aesthetic shapes, which involve free-form surfaces. This book provides the mathematical fundamentals as well as algorithms for various shape interrogation methods including nonlinear polynomial solvers, intersection problems, differential geometry of intersection curves, distance functions, curve and surface interrogation, umbilics and lines of curvature, geodesics, and offset curves and surfaces. This book will be of interest both to graduate students and professionals.


Computer Graphics Through OpenGL®

Computer Graphics Through OpenGL®

Author: Sumanta Guha

Publisher: CRC Press

Published: 2018-12-19

Total Pages: 760

ISBN-13: 0429874847

DOWNLOAD EBOOK

COMPREHENSIVE COVERAGE OF SHADERS AND THE PROGRAMMABLE PIPELINE From geometric primitives to animation to 3D modeling to lighting, shading and texturing, Computer Graphics Through OpenGL®: From Theory to Experiments is a comprehensive introduction to computer graphics which uses an active learning style to teach key concepts. Equally emphasizing theory and practice, the book provides an understanding not only of the principles of 3D computer graphics, but also the use of the OpenGL® Application Programming Interface (API) to code 3D scenes and animation, including games and movies. The undergraduate core of the book takes the student from zero knowledge of computer graphics to a mastery of the fundamental concepts with the ability to code applications using fourth-generation OpenGL®. The remaining chapters explore more advanced topics, including the structure of curves and surfaces, applications of projective spaces and transformations and the implementation of graphics pipelines. This book can be used for introductory undergraduate computer graphics courses over one to two semesters. The careful exposition style attempting to explain each concept in the simplest terms possible should appeal to the self-study student as well. Features • Covers the foundations of 3D computer graphics, including animation, visual techniques and 3D modeling • Comprehensive coverage of OpenGL® 4.x, including the GLSL and vertex, fragment, tessellation and geometry shaders • Includes 180 programs with 270 experiments based on them • Contains 750 exercises, 110 worked examples, and 700 four-color illustrations • Requires no previous knowledge of computer graphics • Balances theory with programming practice using a hands-on interactive approach to explain the underlying concepts


Computer Aided Geometric Design

Computer Aided Geometric Design

Author: Robert E. Barnhill

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 337

ISBN-13: 1483268489

DOWNLOAD EBOOK

Computer Aided Geometric Design covers the proceedings of the First International Conference on Computer Aided Geometric Design, held at the University of Utah on March 18-21, 1974. This book is composed of 15 chapters and starts with reviews of the properties of surface patch equation and the use of computers in geometrical design. The next chapters deal with the principles of smooth interpolation over triangles and without twist constraints, as well as the graphical representation of surfaces over triangles and rectangles. These topics are followed by discussions of the B-spline curves and surfaces; mathematical and practical possibilities of UNISURF; nonlinear splines; and some piecewise polynomial alternatives to splines under tension. Other chapters explore the smooth parametric surfaces, the space curve as a folded edge, and the interactive computer graphics application of the parametric bi-cubic surface to engineering design problems. The final chapters look into the three-dimensional human-machine communication and a class of local interpolating splines. This book will prove useful to design engineers.


Subdivision Methods for Geometric Design

Subdivision Methods for Geometric Design

Author: Joe Warren

Publisher: Morgan Kaufmann

Published: 2002

Total Pages: 326

ISBN-13: 9781558604469

DOWNLOAD EBOOK

Subdivision Methods for Geometric Design provides computer graphics students and designers with a comprehensive guide to subdivision methods, including the background information required to grasp underlying concepts, techniques for manipulating subdivision algorithms to achieve specific effects, and a wide array of digital resources on a dynamic companion Web site. Subdivision Methods promises to be a groundbreaking book, important for both advanced students and working professionals in the field of computer graphics.