Theory and Practice of Finite Elements

Theory and Practice of Finite Elements

Author: Alexandre Ern

Publisher: Springer Science & Business Media

Published: 2004-04-29

Total Pages: 552

ISBN-13: 9780387205748

DOWNLOAD EBOOK

This text presenting the mathematical theory of finite elements is organized into three main sections. The first part develops the theoretical basis for the finite element methods, emphasizing inf-sup conditions over the more conventional Lax-Milgrim paradigm. The second and third parts address various applications and practical implementations of the method, respectively. It contains numerous examples and exercises.


Practical Finite Element Analysis

Practical Finite Element Analysis

Author: Nitin S. Gokhale

Publisher: FINITE TO INFINITE

Published: 2008

Total Pages: 27

ISBN-13: 8190619500

DOWNLOAD EBOOK

Highlights of the book: Discussion about all the fields of Computer Aided Engineering, Finite Element Analysis Sharing of worldwide experience by more than 10 working professionals Emphasis on Practical usuage and minimum mathematics Simple language, more than 1000 colour images International quality printing on specially imported paper Why this book has been written ... FEA is gaining popularity day by day & is a sought after dream career for mechanical engineers. Enthusiastic engineers and managers who want to refresh or update the knowledge on FEA are encountered with volume of published books. Often professionals realize that they are not in touch with theoretical concepts as being pre-requisite and find it too mathematical and Hi-Fi. Many a times these books just end up being decoration in their book shelves ... All the authors of this book are from IIT€™s & IISc and after joining the industry realized gap between university education and the practical FEA. Over the years they learned it via interaction with experts from international community, sharing experience with each other and hard route of trial & error method. The basic aim of this book is to share the knowledge & practices used in the industry with experienced and in particular beginners so as to reduce the learning curve & avoid reinvention of the cycle. Emphasis is on simple language, practical usage, minimum mathematics & no pre-requisites. All basic concepts of engineering are included as & where it is required. It is hoped that this book would be helpful to beginners, experienced users, managers, group leaders and as additional reading material for university courses.


The Finite Element Method: Theory, Implementation, and Applications

The Finite Element Method: Theory, Implementation, and Applications

Author: Mats G. Larson

Publisher: Springer Science & Business Media

Published: 2013-01-13

Total Pages: 403

ISBN-13: 3642332870

DOWNLOAD EBOOK

This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​


Theory and Practice of Finite Elements

Theory and Practice of Finite Elements

Author: Alexandre Ern

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 531

ISBN-13: 1475743556

DOWNLOAD EBOOK

This text presenting the mathematical theory of finite elements is organized into three main sections. The first part develops the theoretical basis for the finite element methods, emphasizing inf-sup conditions over the more conventional Lax-Milgrim paradigm. The second and third parts address various applications and practical implementations of the method, respectively. It contains numerous examples and exercises.


Finite Element Methods

Finite Element Methods

Author: Jonathan Whiteley

Publisher: Springer

Published: 2017-01-26

Total Pages: 236

ISBN-13: 3319499718

DOWNLOAD EBOOK

This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.


Energy Methods and Finite Element Techniques

Energy Methods and Finite Element Techniques

Author: Muhsin J. Jweeg

Publisher: Elsevier

Published: 2021-10-07

Total Pages: 588

ISBN-13: 0323886515

DOWNLOAD EBOOK

Energy Methods and Finite Element Techniques: Stress and Vibration Applications provides readers with a complete understanding of the theory and practice of finite element analysis using energy methods to better understand, predict, and mitigate static stress and vibration in different structural and mechanical configurations. It presents readers with the underlying theory, techniques for implementation, and field-tested applications of these methods using linear ordinary differential equations. Statistical energy analysis and its various applications are covered, and applications discussed include plate problems, bars and beams, plane strain and stress, 3D elasticity problems, vibration problems, and more. Higher order plate and shell elements, steady state heat conduction, and shape function determinations and numerical integration are analyzed as well. - Introduces the theory, practice, and applications of energy methods and the finite element method for predicting and mitigating structural stress and vibrations - Outlines modified finite element techniques such as those with different classes of meshes and basic functions - Discusses statistical energy analysis and its vibration and acoustic applications


Finite element theory and its application with open source codes

Finite element theory and its application with open source codes

Author: Anthony Pickett

Publisher: Anthony Pickett

Published: 2020-11-10

Total Pages: 366

ISBN-13:

DOWNLOAD EBOOK

This book combines essential finite element (FE) theory with a set of fourteen tutorials using relatively easy-to-use open source CAD, FE and other numerical analysis codes so a student can undertake practical analysis and self-study. The theory covers fundamentals of the finite element method. Formulation of element stiffness for one dimensional bar and beam, two dimensional and three dimensional continuum elements, plate and shell elements are derived based on energy and variational methods. Linear, nonlinear and transient dynamic solution methods are covered for both mechanical and field analysis problems with a focus on heat transfer. Other important theoretical topics covered include element integration, element assembly, loads, boundary conditions, contact and a chapter devoted to material laws on elasticity, hyperelasticity and plasticity. A brief introduction to Computational Fluid Dynamics (CFD) is also included. The second half of this book presents a chapter on using tutorials containing information on code installation (on Windows) and getting started, and general hints on meshing, modelling and analysis. This is then followed by tutorials and exercises that cover linear, nonlinear and dynamic mechanical analysis, steady state and transient heat analysis, field analysis, fatigue, buckling and frequency analysis, a hydraulic pipe network analysis, and lastly two tutorials on CFD simulation. In each case theory is linked with application and exercises are included for further self-study. For these tutorials open source codes FreeCAD, CalculiX, FreeMAT and OpenFOAM are used. CalculiX is a comprehensive FE package covering linear, nonlinear and transient analysis. One particular benefit is that its format and structure is based on Abaqus, so knowledge gained is relevant to a leading commercial code. FreeCAD is primarily a powerful CAD modelling code, that includes good finite element meshing and modelling capabilities and is fully integrated with CalculiX. FreeMAT is used in three tutorials for numerical analysis demonstrating algorithms for explicit finite element and CFD analysis. And OpenFOAM is used for other CFD flow simulations. The primary aim of this book is to provide a unified text covering theory and practice, so a student can learn and experiment with these versatile and powerful analysis methods. It should be of value to both finite element courses and for student self-study.


Finite Elements 1-2-3

Finite Elements 1-2-3

Author: A. J. Baker

Publisher: McGraw-Hill Companies

Published: 1991

Total Pages: 376

ISBN-13:

DOWNLOAD EBOOK

This text is intended for the student who is being introduced for the first time to the Finite Element Method (FEM). Written in a simple, easy to follow manner, the book is a practical guide for learning the basics of the method and applying them to a wide variety of problems. The book focuses on the practical applications of fundamental concepts, with special emphasis on fluid mechanics. Computational experiments are integrated throughout the text via example problems and exercises. A comprehensive finite element instructional computer code, written for the PC using standard FORTRAN 77, is used to support every basic step and solve the set of example problems. The coverage of numerical linear algebra presents a unique numerical scheme based on continuing finite element/finite difference methodologies.


Finite Elements in Fracture Mechanics

Finite Elements in Fracture Mechanics

Author: Meinhard Kuna

Publisher: Springer Science & Business Media

Published: 2013-07-19

Total Pages: 464

ISBN-13: 9400766807

DOWNLOAD EBOOK

Fracture mechanics has established itself as an important discipline of growing interest to those working to assess the safety, reliability and service life of engineering structures and materials. In order to calculate the loading situation at cracks and defects, nowadays numerical techniques like finite element method (FEM) have become indispensable tools for a broad range of applications. The present monograph provides an introduction to the essential concepts of fracture mechanics, its main goal being to procure the special techniques for FEM analysis of crack problems, which have to date only been mastered by experts. All kinds of static, dynamic and fatigue fracture problems are treated in two- and three-dimensional elastic and plastic structural components. The usage of the various solution techniques is demonstrated by means of sample problems selected from practical engineering case studies. The primary target group includes graduate students, researchers in academia and engineers in practice.


Engineering Computation of Structures: The Finite Element Method

Engineering Computation of Structures: The Finite Element Method

Author: Maria Augusta Neto

Publisher: Springer

Published: 2015-09-29

Total Pages: 325

ISBN-13: 3319177109

DOWNLOAD EBOOK

This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It uses straightforward examples to demonstrate a complete and detailed finite element procedure, emphasizing the differences between exact and numerical procedures.