Experimentation in Software Engineering

Experimentation in Software Engineering

Author: Claes Wohlin

Publisher: Springer Science & Business Media

Published: 2012-06-16

Total Pages: 249

ISBN-13: 3642290442

DOWNLOAD EBOOK

Like other sciences and engineering disciplines, software engineering requires a cycle of model building, experimentation, and learning. Experiments are valuable tools for all software engineers who are involved in evaluating and choosing between different methods, techniques, languages and tools. The purpose of Experimentation in Software Engineering is to introduce students, teachers, researchers, and practitioners to empirical studies in software engineering, using controlled experiments. The introduction to experimentation is provided through a process perspective, and the focus is on the steps that we have to go through to perform an experiment. The book is divided into three parts. The first part provides a background of theories and methods used in experimentation. Part II then devotes one chapter to each of the five experiment steps: scoping, planning, execution, analysis, and result presentation. Part III completes the presentation with two examples. Assignments and statistical material are provided in appendixes. Overall the book provides indispensable information regarding empirical studies in particular for experiments, but also for case studies, systematic literature reviews, and surveys. It is a revision of the authors’ book, which was published in 2000. In addition, substantial new material, e.g. concerning systematic literature reviews and case study research, is introduced. The book is self-contained and it is suitable as a course book in undergraduate or graduate studies where the need for empirical studies in software engineering is stressed. Exercises and assignments are included to combine the more theoretical material with practical aspects. Researchers will also benefit from the book, learning more about how to conduct empirical studies, and likewise practitioners may use it as a “cookbook” when evaluating new methods or techniques before implementing them in their organization.


Design of Experiments in Chemical Engineering

Design of Experiments in Chemical Engineering

Author: Zivorad R. Lazic

Publisher: John Wiley & Sons

Published: 2006-03-06

Total Pages: 620

ISBN-13: 3527604596

DOWNLOAD EBOOK

While existing books related to DOE are focused either on process or mixture factors or analyze specific tools from DOE science, this text is structured both horizontally and vertically, covering the three most common objectives of any experimental research: * screening designs * mathematical modeling, and * optimization. Written in a simple and lively manner and backed by current chemical product studies from all around the world, the book elucidates basic concepts of statistical methods, experiment design and optimization techniques as applied to chemistry and chemical engineering. Throughout, the focus is on unifying the theory and methodology of optimization with well-known statistical and experimental methods. The author draws on his own experience in research and development, resulting in a work that will assist students, scientists and engineers in using the concepts covered here in seeking optimum conditions for a chemical system or process. With 441 tables, 250 diagrams, as well as 200 examples drawn from current chemical product studies, this is an invaluable and convenient source of information for all those involved in process optimization.


Basics of Software Engineering Experimentation

Basics of Software Engineering Experimentation

Author: Natalia Juristo

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 405

ISBN-13: 1475733046

DOWNLOAD EBOOK

Basics of Software Engineering Experimentation is a practical guide to experimentation in a field which has long been underpinned by suppositions, assumptions, speculations and beliefs. It demonstrates to software engineers how Experimental Design and Analysis can be used to validate their beliefs and ideas. The book does not assume its readers have an in-depth knowledge of mathematics, specifying the conceptual essence of the techniques to use in the design and analysis of experiments and keeping the mathematical calculations clear and simple. Basics of Software Engineering Experimentation is practically oriented and is specially written for software engineers, all the examples being based on real and fictitious software engineering experiments.


Experimentation and Uncertainty Analysis for Engineers

Experimentation and Uncertainty Analysis for Engineers

Author: Hugh W. Coleman

Publisher: John Wiley & Sons

Published: 1999

Total Pages: 298

ISBN-13: 9780471121466

DOWNLOAD EBOOK

Now, in the only manual available with direct applications to the design and analysis of engineering experiments, respected authors Hugh Coleman and Glenn Steele have thoroughly updated their bestselling title to include the new methodologies being used by the United States and International standards committee groups.


Experimental Methods and Instrumentation for Chemical Engineers

Experimental Methods and Instrumentation for Chemical Engineers

Author: Gregory S. Patience

Publisher: Elsevier

Published: 2017-09-08

Total Pages: 426

ISBN-13: 0444637923

DOWNLOAD EBOOK

Experimental Methods and Instrumentation for Chemical Engineers, Second Edition, touches many aspects of engineering practice, research, and statistics. The principles of unit operations, transport phenomena, and plant design constitute the focus of chemical engineering in the latter years of the curricula. Experimental methods and instrumentation is the precursor to these subjects. This resource integrates these concepts with statistics and uncertainty analysis to define what is necessary to measure and to control, how precisely and how often.The completely updated second edition is divided into several themes related to data: metrology, notions of statistics, and design of experiments. The book then covers basic principles of sensing devices, with a brand new chapter covering force and mass, followed by pressure, temperature, flow rate, and physico-chemical properties. It continues with chapters that describe how to measure gas and liquid concentrations, how to characterize solids, and finally a new chapter on spectroscopic techniques such as UV/Vis, IR, XRD, XPS, NMR, and XAS. Throughout the book, the author integrates the concepts of uncertainty, along with a historical context and practical examples.A problem solutions manual is available from the author upon request. - Includes the basics for 1st and 2nd year chemical engineers, providing a foundation for unit operations and transport phenomena - Features many practical examples - Offers exercises for students at the end of each chapter - Includes up-to-date detailed drawings and photos of equipment


Introduction to Engineering Experimentation

Introduction to Engineering Experimentation

Author: Anthony J. Wheeler

Publisher: Prentice Hall

Published: 2010

Total Pages: 482

ISBN-13: 0131742760

DOWNLOAD EBOOK

KEY BENEFIT An up-to-date, practical introduction to engineering experimentation. Introduction to Engineering Experimentation, 3E introduces many topics that engineers need to master in order to plan, design, and document a successful experiment or measurement system. The text offers a practical approach with current examples and thorough discussions of key topics, including those often ignored or merely touched upon by other texts, such as modern computerized data acquisition systems, electrical output measuring devices, and in-depth coverage of experimental uncertainty analysis. The book includes theoretical coverage and selected applications of statistics and probability, instrument dynamic response, uncertainty analysis and Fourier analysis; detailed descriptions of computerized data acquisition systems and system components, as well as a wide range of common sensors and measurement systems such as strain gages and thermocouples. Worked examples are provided for theoretical topics and sources of uncertainty are presented for measurement systems. For engineering professionals looking for an up-to-date, practical introduction to the field of engineering experimentation.


Experimentation, Validation, and Uncertainty Analysis for Engineers

Experimentation, Validation, and Uncertainty Analysis for Engineers

Author: Hugh W. Coleman

Publisher: John Wiley & Sons

Published: 2018-03-29

Total Pages: 388

ISBN-13: 111941766X

DOWNLOAD EBOOK

Helps engineers and scientists assess and manage uncertainty at all stages of experimentation and validation of simulations Fully updated from its previous edition, Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes expanded coverage and new examples of applying the Monte Carlo Method (MCM) in performing uncertainty analyses. Presenting the current, internationally accepted methodology from ISO, ANSI, and ASME standards for propagating uncertainties using both the MCM and the Taylor Series Method (TSM), it provides a logical approach to experimentation and validation through the application of uncertainty analysis in the planning, design, construction, debugging, execution, data analysis, and reporting phases of experimental and validation programs. It also illustrates how to use a spreadsheet approach to apply the MCM and the TSM, based on the authors’ experience in applying uncertainty analysis in complex, large-scale testing of real engineering systems. Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes examples throughout, contains end of chapter problems, and is accompanied by the authors’ website www.uncertainty-analysis.com. Guides readers through all aspects of experimentation, validation, and uncertainty analysis Emphasizes the use of the Monte Carlo Method in performing uncertainty analysis Includes complete new examples throughout Features workable problems at the end of chapters Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition is an ideal text and guide for researchers, engineers, and graduate and senior undergraduate students in engineering and science disciplines. Knowledge of the material in this Fourth Edition is a must for those involved in executing or managing experimental programs or validating models and simulations.