Carbon Dioxide Utilization to Sustainable Energy and Fuels

Carbon Dioxide Utilization to Sustainable Energy and Fuels

Author: Inamuddin

Publisher: Springer Nature

Published: 2021-11-30

Total Pages: 354

ISBN-13: 3030728773

DOWNLOAD EBOOK

This edited book provides an in-depth overview of carbon dioxide (CO2) transformations to sustainable power technologies. It also discusses the wide scope of issues in engineering avenues, key designs, device fabrication, characterizations, various types of conversions and related topics. It includes studies focusing on the applications in catalysis, energy conversion and conversion technologies, etc. This is a unique reference guide, and one of the detailed works is on this technology. The book is the result of commitments by leading researchers from various backgrounds and expertise. The book is well structured and is an essential resource for scientists, undergraduate, postgraduate students, faculty, R&D professionals, energy chemists and industrial experts.


Advanced CO2 Capture Technologies

Advanced CO2 Capture Technologies

Author: Shin-ichi Nakao

Publisher: Springer

Published: 2019-05-07

Total Pages: 90

ISBN-13: 3030188582

DOWNLOAD EBOOK

This book summarises the advanced CO2 capture technologies that can be used to reduce greenhouse gas emissions, especially those from large-scale sources, such as power-generation and steel-making plants. Focusing on the fundamental chemistry and chemical processes, as well as advanced technologies, including absorption and adsorption, it also discusses other aspects of the major CO2 capture methods: membrane separation; the basic chemistry and process for CO2 capture; the development of materials and processes; and practical applications, based on the authors’ R&D experience. This book serves as a valuable reference resource for researchers, teachers and students interested in CO2 problems, providing essential information on how to capture CO2 from various types of gases efficiently. It is also of interest to practitioners and academics, as it discusses the performance of the latest technologies applied in large-scale emission sources.


Biomass Chars: Elaboration, Characterization and Applications Ⅱ

Biomass Chars: Elaboration, Characterization and Applications Ⅱ

Author: Lionel Limousy

Publisher: MDPI

Published: 2019-10-16

Total Pages: 342

ISBN-13: 3039216627

DOWNLOAD EBOOK

Biomass can be converted to energy, biofuels, and bioproducts via thermochemical conversion processes, such as combustion, pyrolysis, and gasification. Combustion technology is most widely applied on an industrial scale. However, biomass gasification and pyrolysis processes are still in the research and development stage. The major products from these processes are syngas, bio-oil, and char (called also biochar for agronomic application). Among these products, biomass chars have received increasing attention for different applications, such as gasification, co-combustion, catalysts or adsorbents precursors, soil amendment, carbon fuel cells, and supercapacitors. This Special Issue provides an overview of biomass char production methods (pyrolysis, hydrothermal carbonization, etc.), characterization techniques (e.g., scanning electronic microscopy, X-ray fluorescence, nitrogen adsorption, Raman spectroscopy, nuclear magnetic resonance spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption and mass spectrometry), their properties, and their suitable recovery processes.


Introduction To Carbon Capture And Sequestration

Introduction To Carbon Capture And Sequestration

Author: Berend Smit

Publisher: World Scientific

Published: 2014-01-10

Total Pages: 597

ISBN-13: 178326330X

DOWNLOAD EBOOK

The aim of the book is to provide an understanding of the current science underpinning Carbon Capture and Sequestration (CCS) and to provide students and interested researchers with sufficient background on the basics of Chemical Engineering, Material Science, and Geology that they can understand the current state of the art of the research in the field of CCS. In addition, the book provides a comprehensive discussion of the impact of CCS on the energy landscape, society, and climate as these topics govern the success of the science being done in this field.The book is aimed at undergraduate students, graduate students, scientists, and professionals who would like to gain a broad multidisciplinary view of the research that is being carried out to solve one of greatest challenges of our generation.


Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption

Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption

Author: Wojciech M. Budzianowski

Publisher: Springer

Published: 2016-12-01

Total Pages: 282

ISBN-13: 3319472623

DOWNLOAD EBOOK

This book reviews and characterises promising single-compound solvents, solvent blends and advanced solvent systems suitable for CO2 capture applications using gas-liquid absorption. Focusing on energy efficient solvents with minimal adverse environmental impact, the contributions included analyse the major technological advantages, as well as research and development challenges of promising solvents and solvent systems in various sustainable CO2 capture applications. It provides a valuable source of information for undergraduate and postgraduate students, as well as for chemical engineers and energy specialists.


Materials for Carbon Capture

Materials for Carbon Capture

Author: De-en Jiang

Publisher: John Wiley & Sons

Published: 2020-02-25

Total Pages: 397

ISBN-13: 1119091179

DOWNLOAD EBOOK

Covers a wide range of advanced materials and technologies for CO2 capture As a frontier research area, carbon capture has been a major driving force behind many materials technologies. This book highlights the current state-of-the-art in materials for carbon capture, providing a comprehensive understanding of separations ranging from solid sorbents to liquid sorbents and membranes. Filled with diverse and unconventional topics throughout, it seeks to inspire students, as well as experts, to go beyond the novel materials highlighted and develop new materials with enhanced separations properties. Edited by leading authorities in the field, Materials for Carbon Capture offers in-depth chapters covering: CO2 Capture and Separation of Metal-Organic Frameworks; Porous Carbon Materials: Designed Synthesis and CO2 Capture; Porous Aromatic Frameworks for Carbon Dioxide Capture; and Virtual Screening of Materials for Carbon Capture. Other chapters look at Ultrathin Membranes for Gas Separation; Polymeric Membranes; Carbon Membranes for CO2 Separation; and Composite Materials for Carbon Captures. The book finishes with sections on Poly(amidoamine) Dendrimers for Carbon Capture and Ionic Liquids for Chemisorption of CO2 and Ionic Liquid-Based Membranes. A comprehensive overview and survey of the present status of materials and technologies for carbon capture Covers materials synthesis, gas separations, membrane fabrication, and CO2 removal to highlight recent progress in the materials and chemistry aspects of carbon capture Allows the reader to better understand the challenges and opportunities in carbon capture Edited by leading experts working on materials and membranes for carbon separation and capture Materials for Carbon Capture is an excellent book for advanced students of chemistry, materials science, chemical and energy engineering, and early career scientists who are interested in carbon capture. It will also be of great benefit to researchers in academia, national labs, research institutes, and industry working in the field of gas separations and carbon capture.


Adsorption and Diffusion

Adsorption and Diffusion

Author: Hellmut G. Karge

Publisher: Springer Science & Business Media

Published: 2008-06-17

Total Pages: 411

ISBN-13: 3540739661

DOWNLOAD EBOOK

"Molecular Sieves - Science and Technology" covers, in a comprehensive manner, the science and technology of zeolites and all related microporous and mesoporous materials. The contributions are grouped together topically in such a way that each volume deals with a specific sub-field. Volume 7 treats fundamentals and analyses of adsorption and diffusion in zeolites including single-file diffusion. Various methods of measuring adsorption and diffusion are described and discussed.


America's Climate Choices

America's Climate Choices

Author: National Research Council

Publisher: National Academies Press

Published: 2011-06-11

Total Pages: 134

ISBN-13: 0309145856

DOWNLOAD EBOOK

Climate change is occurring. It is very likely caused by the emission of greenhouse gases from human activities, and poses significant risks for a range of human and natural systems. And these emissions continue to increase, which will result in further change and greater risks. America's Climate Choices makes the case that the environmental, economic, and humanitarian risks posed by climate change indicate a pressing need for substantial action now to limit the magnitude of climate change and to prepare for adapting to its impacts. Although there is some uncertainty about future risk, acting now will reduce the risks posed by climate change and the pressure to make larger, more rapid, and potentially more expensive reductions later. Most actions taken to reduce vulnerability to climate change impacts are common sense investments that will offer protection against natural climate variations and extreme events. In addition, crucial investment decisions made now about equipment and infrastructure can "lock in" commitments to greenhouse gas emissions for decades to come. Finally, while it may be possible to scale back or reverse many responses to climate change, it is difficult or impossible to "undo" climate change, once manifested. Current efforts of local, state, and private-sector actors are important, but not likely to yield progress comparable to what could be achieved with the addition of strong federal policies that establish coherent national goals and incentives, and that promote strong U.S. engagement in international-level response efforts. The inherent complexities and uncertainties of climate change are best met by applying an iterative risk management framework and making efforts to significantly reduce greenhouse gas emissions; prepare for adapting to impacts; invest in scientific research, technology development, and information systems; and facilitate engagement between scientific and technical experts and the many types of stakeholders making America's climate choices.


Advances in Carbon Capture

Advances in Carbon Capture

Author: Mohammad Reza Rahimpour

Publisher: Woodhead Publishing

Published: 2020-08-04

Total Pages: 574

ISBN-13: 0128227583

DOWNLOAD EBOOK

Advances in Carbon Capture reviews major implementations of CO2 capture, including absorption, adsorption, permeation and biological techniques. For each approach, key benefits and drawbacks of separation methods and technologies, perspectives on CO2 reuse and conversion, and pathways for future CO2 capture research are explored in depth. The work presents a comprehensive comparison of capture technologies. In addition, the alternatives for CO2 separation from various feeds are investigated based on process economics, flexibility, industrial aspects, purification level and environmental viewpoints. - Explores key CO2 separation and compare technologies in terms of provable advantages and limitations - Analyzes all critical CO2 capture methods in tandem with related technologies - Introduces a panorama of various applications of CO2 capture


Negative Emissions Technologies and Reliable Sequestration

Negative Emissions Technologies and Reliable Sequestration

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2019-04-08

Total Pages: 511

ISBN-13: 0309484529

DOWNLOAD EBOOK

To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.