Theoretical Modelling of Aeroheating on Sharpened Noses Under Rarefied Gas Effects and Nonequilibrium Real Gas Effects

Theoretical Modelling of Aeroheating on Sharpened Noses Under Rarefied Gas Effects and Nonequilibrium Real Gas Effects

Author: Zhi-Hui Wang

Publisher: Springer

Published: 2014-08-28

Total Pages: 107

ISBN-13: 3662443651

DOWNLOAD EBOOK

Theoretical Modelling of Aeroheating on Sharpened Noses under Rarefied Gas Effects and Nonequilibrium Real Gas Effects employs a theoretical modeling method to study hypersonic flows and aeroheating on sharpened noses under rarefied gas effects and nonequilibrium real gas effects that are beyond the scope of traditional fluid mechanics. It reveals the nonlinear and nonequilibrium features, discusses the corresponding flow and heat transfer mechanisms, and ultimately establishes an analytical engineering theory framework for hypersonic rarefied and chemical nonequilibrium flows. The original analytical findings presented are not only of great academic significance, but also hold considerable potential for applications in engineering practice. The study explores a viable new approach, beyond the heavily relied-upon numerical methods and empirical formulas, to the present research field, which could be regarded as a successful implementation of the idea and methodology of the engineering sciences.


Unified Theoretical Foundations of Lift and Drag in Viscous and Compressible External Flows

Unified Theoretical Foundations of Lift and Drag in Viscous and Compressible External Flows

Author: Luo-Qin Liu

Publisher: Springer

Published: 2017-09-29

Total Pages: 168

ISBN-13: 9811062234

DOWNLOAD EBOOK

This thesis analyzes aerodynamic forces in viscous and compressible external flows. It is unique, as the force theories discussed apply to fully viscous and compressible Navier-Stokes external flows, allowing them to be readily combined with computational fluid dynamics to form a profound basis of modern aerodynamics. This thesis makes three fundamental contributions to theoretical aerodynamics, presenting: (1) a universal far-field zonal structure that determines how disturbance flow quantities decay dynamically to the state of rest at infinity; (2) a universal and exact total-force formula for steady flow and its far-field asymptotics; and (3) a general near-field theory for the detailed diagnosis of all physical constituents of aerodynamic force and moment.


Basics of Aerothermodynamics

Basics of Aerothermodynamics

Author: Ernst Heinrich Hirschel

Publisher: Springer Science & Business Media

Published: 2006-01-16

Total Pages: 419

ISBN-13: 3540265198

DOWNLOAD EBOOK

The last two decades have brought two important developments for aeroth- modynamics. One is that airbreathing hypersonic flight became the topic of technology programmes and extended system studies. The other is the emergence and maturing of the discrete numerical methods of aerodyn- ics/aerothermodynamics complementary to the ground-simulation facilities, with the parallel enormous growth of computer power. Airbreathing hypersonic flight vehicles are, in contrast to aeroassisted re-entry vehicles, drag sensitive. They have, further, highly integrated lift and propulsion systems. This means that viscous eflFects, like boundary-layer development, laminar-turbulent transition, to a certain degree also strong interaction phenomena, are much more important for such vehicles than for re-entry vehicles. This holds also for the thermal state of the surface and thermal surface effects, concerning viscous and thermo-chemical phenomena (more important for re-entry vehicles) at and near the wall. The discrete numerical methods of aerodynamics/aerothermodynamics permit now - what was twenty years ago not imaginable - the simulation of high speed flows past real flight vehicle configurations with thermo-chemical and viscous effects, the description of the latter being still handicapped by in sufficient flow-physics models. The benefits of numerical simulation for flight vehicle design are enormous: much improved aerodynamic shape definition and optimization, provision of accurate and reliable aerodynamic data, and highly accurate determination of thermal and mechanical loads. Truly mul- disciplinary design and optimization methods regarding the layout of thermal protection systems, all kinds of aero-servoelasticity problems of the airframe, et cetera, begin now to emerge.


Fires, Explosions, and Toxic Gas Dispersions

Fires, Explosions, and Toxic Gas Dispersions

Author: Marc J. Assael

Publisher: CRC Press

Published: 2010-02-23

Total Pages: 351

ISBN-13: 1439826765

DOWNLOAD EBOOK

Today's risk analysis is a very challenging field, and a solid understanding of the calculations procedure associated with it is essential for anyone involved. Fires, Explosions, and Toxic Gas Dispersions: Effects Calculation and Risk Analysis provides an overview of the methods used to assess the risk of fires, explosions, and toxic gas dispersion


High-speed Wind Tunnels

High-speed Wind Tunnels

Author: Luigi Crocco

Publisher:

Published: 1946

Total Pages: 236

ISBN-13:

DOWNLOAD EBOOK

The importance assumed in recent times by experimental supersonic wind tunnels, as well as the power required, has brought about the need for a study which would permit a comparison of the types tested and the principal theoretical plans.


Incompressible Flow

Incompressible Flow

Author: Ronald L. Panton

Publisher: John Wiley & Sons

Published: 2013-08-05

Total Pages: 912

ISBN-13: 1118013433

DOWNLOAD EBOOK

The most teachable book on incompressible flow— now fully revised, updated, and expanded Incompressible Flow, Fourth Edition is the updated and revised edition of Ronald Panton's classic text. It continues a respected tradition of providing the most comprehensive coverage of the subject in an exceptionally clear, unified, and carefully paced introduction to advanced concepts in fluid mechanics. Beginning with basic principles, this Fourth Edition patiently develops the math and physics leading to major theories. Throughout, the book provides a unified presentation of physics, mathematics, and engineering applications, liberally supplemented with helpful exercises and example problems. Revised to reflect students' ready access to mathematical computer programs that have advanced features and are easy to use, Incompressible Flow, Fourth Edition includes: Several more exact solutions of the Navier-Stokes equations Classic-style Fortran programs for the Hiemenz flow, the Psi-Omega method for entrance flow, and the laminar boundary layer program, all revised into MATLAB A new discussion of the global vorticity boundary restriction A revised vorticity dynamics chapter with new examples, including the ring line vortex and the Fraenkel-Norbury vortex solutions A discussion of the different behaviors that occur in subsonic and supersonic steady flows Additional emphasis on composite asymptotic expansions Incompressible Flow, Fourth Edition is the ideal coursebook for classes in fluid dynamics offered in mechanical, aerospace, and chemical engineering programs.


Aerodynamic Principles of Flight Vehicles

Aerodynamic Principles of Flight Vehicles

Author: A. G. Panaras

Publisher: AIAA (American Institute of Aeronautics & Astronautics)

Published: 2012

Total Pages: 0

ISBN-13: 9781600869167

DOWNLOAD EBOOK

In "Aerodynamic Principles of Flight Vehicles" Argyris Panaras examines the fundamentals of vortices and shock waves, aerodynamic estimation of lift and drag, airfoil theory, boundary layer control, and high-speed, high-temperature flow. Individual chapters address vortices in aerodynamics, transonic and supersonic flows, transonic/supersonic aircraft configurations, and high-supersonic/hypersonic flows, beginning with definitions and historical data, and then describing present-day status and current research challenges. Emphasis is given to flow control, to the evolution of flight vehicle shapes as flight speed has increased, and to discoveries that enabled breakthrough developments in flight. The book: examines why various equations and technologies were developed, explains major contributors in areas such as vortices and aircraft wakes, drag buildup, sonic boom, and shock wave-boundary layer interactions, among others, and helps readers apply concepts from the material to their own projects. Archival and encyclopedic, "Aerodynamic Principles of Flight Vehicles" is a superb reference for aeronautical students and professionals alike. Although most beneficial to readers with a working knowledge of aerodynamics, it is accessible to anyone with an introductory understanding of the field.


Hypersonic Aerothermodynamics

Hypersonic Aerothermodynamics

Author: John J. Bertin

Publisher: AIAA

Published: 1994

Total Pages: 644

ISBN-13: 9781563470363

DOWNLOAD EBOOK

A modern treatment of hypersonic aerothermodynamics for students, engineers, scientists, and program managers involved in the study and application of hypersonic flight. It assumes an understanding of the basic principles of fluid mechanics, thermodynamics, compressible flow, and heat transfer. Ten chapters address: general characterization of hypersonic flows; basic equations of motion; defining the aerothermodynamic environment; experimental measurements of hypersonic flows; stagnation-region flowfield; the pressure distribution; the boundary layer and convective heat transfer; aerodynamic forces and moments; viscous interactions; and aerothermodynamics and design considerations. Includes sample exercises and homework problems. Annotation copyright by Book News, Inc., Portland, OR


New Results in Numerical and Experimental Fluid Mechanics VI

New Results in Numerical and Experimental Fluid Mechanics VI

Author: Cameron Tropea

Publisher: Springer Science & Business Media

Published: 2007-10-18

Total Pages: 487

ISBN-13: 3540744606

DOWNLOAD EBOOK

This volume features the contributions to the 15th Symposium of the STAB (German Aerospace Aerodynamics Association). Papers provide a broad overview of ongoing work in Germany, including high aspect ratio wings, low aspect ratio wings, bluff bodies, laminar flow control and transition, active flow control, hypersonic flows, aeroelasticity, aeroacoustics, mathematical fundamentals, numerical simulations, physical fundamentals, and facilities.