Thermodiffusion in Multicomponent Mixtures

Thermodiffusion in Multicomponent Mixtures

Author: Seshasai Srinivasan

Publisher: Springer Science & Business Media

Published: 2012-11-13

Total Pages: 115

ISBN-13: 1461455995

DOWNLOAD EBOOK

Thermodiffusion in Multicomponent Mixtures presents the computational approaches that are employed in the study of thermodiffusion in various types of mixtures, namely, hydrocarbons, polymers, water-alcohol, molten metals, and so forth. We present a detailed formalism of these methods that are based on non-equilibrium thermodynamics or algebraic correlations or principles of the artificial neural network. The book will serve as single complete reference to understand the theoretical derivations of thermodiffusion models and its application to different types of multi-component mixtures. An exhaustive discussion of these is used to give a complete perspective of the principles and the key factors that govern the thermodiffusion process.


Theoretical and Numerical Investigation of Thermodiffusion (Soret Effect) and Thermosolutal Convection

Theoretical and Numerical Investigation of Thermodiffusion (Soret Effect) and Thermosolutal Convection

Author: Shu Pan

Publisher:

Published: 2007

Total Pages: 232

ISBN-13: 9780494393888

DOWNLOAD EBOOK

Thermodiffusion is a mass diffusion phenomenon induced by a temperature gradient and has attracted increasing interests from theorists and experimentalists. In this work, the modelling of thermodiffusion in fluids is theoretically treated in the framework of non-equilibrium thermodynamics. The method developed in this work for thermodiffusion calculation have been incorporated into a computational fluid dynamics program to study the influence of the thermosolutal convection caused by residual gravity and g-jitter. The results have shown that the influence of microgravity environment would become stronger with an increase in the acceleration level, while at the same acceleration level, the effect would decrease at higher frequencies. For an isopropanol-water mixture under a typical microgravity condition for thermodiffusion measurement, the effect of residual gravity lower than 10--5G or the g-jitter components with an acceleration level of 10--4 G and frequencies higher than 0.0005 Hz may be negligible. The analysis in this work has indicated that under the expected microgravity environment on the International Space Station, the influence of g-jitter on the thermodiffusion measurement may be negligibly small for frequencies lower than 1 Hz. Based on four postulates in non-equilibrium thermodynamics, a non-equilibrium thermodynamic approach has been developed for thermodiffusion in associating fluid mixtures. Using the thermodynamic properties provided by the PC-SAFT Equation of State, this approach was used to evaluate the thermal diffusion factor alphaT in aqueous alkanol solutions, including methanol-water, ethanol-water and isopropanol-water mixtures. Using two adjustable parameters calculated from experimental data, the approach has shown a successful estimation of the sign change in the thermodiffusion factor for these mixtures, which was an unresolved problem in thermodiffusion research. In addition to the new model for thermodiffusion in associating mixtures, the current approaches for thermal diffusion estimation in multicomponent hydrocarbon mixtures have been evaluated by comparisons with recent experimental data. Three equations of state, including Peng-Robinson, volume translated Peng-Robinson and PC-SAFT were used in the calculation. The Firoozabadi model combined with vtPR or PC-SAFT was shown to be applicable to thermal diffusion estimation for hydrocarbon mixtures, while PC-SAFT combined with the Firoozabadi model would be a promising choice for mixtures other than hydrocarbons due to the wide applicability of PC-SAFT.


Thermal Nonequilibrium Phenomena in Fluid Mixtures

Thermal Nonequilibrium Phenomena in Fluid Mixtures

Author: W. Köhler

Publisher: Springer

Published: 2008-01-11

Total Pages: 476

ISBN-13: 3540457917

DOWNLOAD EBOOK

Thermodiffusion describes the coupling between a temperature gradient and a resulting mass flux. Traditionally, the focus has been on simple fluids, and it is now extending to more complex systems such as electrolytes, polymers, colloidal dispersions and magnetic fluids. This book widens the scope even further by including applications in ionic solids. Written as a set of tutorial reviews, it will be useful to experts, nonspecialist researchers and postgraduate students alike.


Encyclopedia of Microfluidics and Nanofluidics

Encyclopedia of Microfluidics and Nanofluidics

Author: Dongqing Li

Publisher: Springer Science & Business Media

Published: 2008-08-06

Total Pages: 2242

ISBN-13: 0387324682

DOWNLOAD EBOOK

Covering all aspects of transport phenomena on the nano- and micro-scale, this encyclopedia features over 750 entries in three alphabetically-arranged volumes including the most up-to-date research, insights, and applied techniques across all areas. Coverage includes electrical double-layers, optofluidics, DNC lab-on-a-chip, nanosensors, and more.


Hydrodynamic Fluctuations in Fluids and Fluid Mixtures

Hydrodynamic Fluctuations in Fluids and Fluid Mixtures

Author: Jose M. Ortiz de Zarate

Publisher: Elsevier

Published: 2006-04-19

Total Pages: 321

ISBN-13: 0080459439

DOWNLOAD EBOOK

This book deals with density, temperature, velocity and concentration fluctuations in fluids and fluid mixtures. The book first reviews thermal fluctuations in equilibrium fluids on the basis of fluctuating hydrodynamics. It then shows how the method of fluctuating hydrodynamics can be extended to deal with hydrodynamic fluctuations when the system is in a stationary nonequilibrium state. In contrast to equilibrium fluids where the fluctuations are generally short ranged unless the system is close to a critical point, fluctuations in nonequilibrium fluids are always long-ranged encompassing the entire system. The book provides the first comprehensive treatment of fluctuations in fluids and fluid mixtures brought out of equilibrium by the imposition of a temperature and concentration gradient but that are still in a macroscopically quiescent state. By incorporating appropriate boundary conditions in the case of fluid layers, it is shown how fluctuating hydrodynamics affects the fluctuations close to the onset of convection. Experimental techniques of light scattering and shadowgraphy for measuring nonequilibrium fluctuations are elucidated and the experimental results thus far reported in the literature are reviewed.· Systematic exposition of fluctuating hydrodynamics and its applications· First book on nonequilibrium fluctuations in fluids· Fluctuating Boussinesq equations and nonequilibrium fluids· Fluid layers and onset of convection· Rayleigh scattering and Brillouin scattering in fluids· Shadowgraph technique for measuring fluctuations· Fluctuations near hydrodynamic instabilities


Chemical Science and Engineering Technology

Chemical Science and Engineering Technology

Author: Devrim Balköse

Publisher: CRC Press

Published: 2019-03-19

Total Pages: 378

ISBN-13: 1351048309

DOWNLOAD EBOOK

One of the major areas of emphasis in the field of in chemical science and engineering technology in recent years has been interdisciplinary research, a trend that promises new insights and innovations rooted in cross-disciplinary collaboration. This volume is designed for stepping beyond traditional disciplinary boundaries and applying knowledge and insights from multiple fields. This book, Chemical Science and Engineering Technology: Perspectives on Interdisciplinary Research, provides a selection of chapters on interdisciplinary research in chemical science and engineering technology, taking a conceptual, and practical approach. The book includes case studies and supporting technologies and also explains the conceptual thinking behind current uses and potential uses not yet implemented. International experts with countless years of experience lend this volume credibility.


Transport Phenomena in Porous Media III

Transport Phenomena in Porous Media III

Author: Derek B Ingham

Publisher: Elsevier

Published: 2005-07-29

Total Pages: 503

ISBN-13: 0080543189

DOWNLOAD EBOOK

Fluid and flow problems in porous media have attracted the attention of industrialists, engineers and scientists from varying disciplines, such as chemical, environmental, and mechanical engineering, geothermal physics and food science. There has been a increasing interest in heat and fluid flows through porous media, making this book a timely and appropriate resource.Each chapter is systematically detailed to be easily grasped by a research worker with basic knowledge of fluid mechanics, heat transfer and computational and experimental methods. At the same time, the readers will be informed of the most recent research literature in the field, giving it dual usage as both a post-grad text book and professional reference.Written by the recent directors of the NATO Advanced Study Institute session on 'Emerging Technologies and Techniques in Porous Media' (June 2003), this book is a timely and essential reference for scientists and engineers within a variety of fields.