A valuable research tool in continuum mechanics for more that 50 years, this highly regarded engineering manual focuses on three important aspects of elasticity theory: finite elastic deformations, complex variable methods for two-dimensional problems for both isotropic and aeolotropic bodies, and shell theory. Additional topics include three-dimensional problems for isotropic and transversely isotropic bodies.
Accessible text covers deformation and stress, derivation of equations of finite elasticity, and formulation of infinitesimal elasticity with application to two- and three-dimensional static problems and elastic waves. 1980 edition.
A comprehensive textbook covering not only the ordinary theory of the deformation of solids, but also some topics not usually found in textbooks on the subject, such as thermal conduction and viscosity in solids.
A comprehensive textbook covering not only the ordinary theory of the deformation of solids, but also some topics not usually found in textbooks on the subject, such as thermal conduction and viscosity in solids.
"Arthur Boresi and Ken Chong's Elasticity in Engineering Mechanics has been prized by many aspiring and practicing engineers as an easy-to-navigate guide to an area of engineering science that is fundamental to aeronautical, civil, and mechanical engineering, and to other branches of engineering. With its focus not only on elasticity theory but also on concrete applications in real engineering situations, this work is a core text in a spectrum of courses at both the undergraduate and graduate levels, and a superior reference for engineering professionals."--BOOK JACKET.
Foundations of the Theory of Elasticity, Plasticity, and Viscoelasticity details fundamental and practical skills and approaches for carrying out research in the field of modern problems in the mechanics of deformed solids, which involves the theories of elasticity, plasticity, and viscoelasticity. The book includes all modern methods of research as well as the results of the authors’ recent work and is presented with sufficient mathematical strictness and proof. The first six chapters are devoted to the foundations of the theory of elasticity. Theory of stress-strain state, physical relations and problem statements, variation principles, contact and 2D problems, and the theory of plates are presented, and the theories are accompanied by examples of solving typical problems. The last six chapters will be useful to postgraduates and scientists engaged in nonlinear mechanics of deformed inhomogeneous bodies. The foundations of the modern theory of plasticity (general, small elastoplastic deformations and the theory of flow), linear, and nonlinear viscoelasticity are set forth. Corresponding research of three-layered circular plates of various materials is included to illustrate methods of problem solving. Analytical solutions and numerical results for elastic, elastoplastic, lineaer viscoelastic and viscoelastoplastic plates are also given. Thermoviscoelastoplastic characteristics of certain materials needed for numerical account are presented in the eleventh chapter. The informative book is intended for scientists, postgraduates and higher-level students of engineering spheres and will provide important practical skills and approaches.
Although there are several books in print dealing with elasticity, many focus on specialized topics such as mathematical foundations, anisotropic materials, two-dimensional problems, thermoelasticity, non-linear theory, etc. As such they are not appropriate candidates for a general textbook. This book provides a concise and organized presentation and development of general theory of elasticity. This text is an excellent book teaching guide. - Contains exercises for student engagement as well as the integration and use of MATLAB Software - Provides development of common solution methodologies and a systematic review of analytical solutions useful in applications of
Although finite elasticity theory has its roots in the nineteenth century, its development was largely neglected until the end of the Second World War. Since then it has attracted a substantial amount of attention and considerable progress has been made both in our understanding of the basis of the subject and in its applications. It occurred to me about three years ago that finite elasticity had reached a level of development at which an international symposium on the subject was overdue. Accordingly, with strong encouragement from Professor P. M. Naghdi and numerous other colleagues, I submitted to the International Union of Theoretical and Applied Mechanics a proposal for their support of such a symposium to be held at Lehigh University during the period August 10-15, 1980. The proposal received enthusiastic support from the International Union and an international scientific committee under my chairmanship, consisting of Professors G. Fichera (Rome), W. T. Koiter (Delft), L. I. Sedov (Moscow), and A. J. M. Spencer (Nottingham), was assigned responsibility for the scientific program. In constructing the program we aimed at as broad a coverage as possible of the many aspects of the subject on which significant progress is currently being made. These range from theoretical studies of existence and uniqueness of solutions of the governing equations of finite elasticity theory to experimental studies of its application to such problems as tear resistance and friction in vulcanized rubbers.