Introduction to High Energy Physics

Introduction to High Energy Physics

Author: Donald H. Perkins

Publisher: Cambridge University Press

Published: 2000-04-13

Total Pages: 454

ISBN-13: 1139643371

DOWNLOAD EBOOK

This highly-regarded text provides a comprehensive introduction to modern particle physics. Extensively rewritten and updated, this 4th edition includes developments in elementary particle physics, as well as its connections with cosmology and astrophysics. As in previous editions, the balance between experiment and theory is continually emphasised. The stress is on the phenomenological approach and basic theoretical concepts rather than rigorous mathematical detail. Short descriptions are given of some of the key experiments in the field, and how they have influenced our thinking. Although most of the material is presented in the context of the Standard Model of quarks and leptons, the shortcomings of this model and new physics beyond its compass (such as supersymmetry, neutrino mass and oscillations, GUTs and superstrings) are also discussed. The text includes many problems and a detailed and annotated further reading list.


Theoretical and High Energy Physics Programs. Progress Report, September 1, 1972--August 31, 1973

Theoretical and High Energy Physics Programs. Progress Report, September 1, 1972--August 31, 1973

Author:

Publisher:

Published: 1973

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Research in nuclear physics and elementary particle physics is described. The nuclear research is all theoretical, but the high energy research is both theoretical and experimental. The report is organized according to this three- way division of the research activities. It is warned that some of the results presented are tentative and may be modified before publication. A list of publications is presented. (auth).


Techniques and Concepts of High-Energy Physics III

Techniques and Concepts of High-Energy Physics III

Author: Thomas Ferbel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 439

ISBN-13: 1468450182

DOWNLOAD EBOOK

The third Advanced Study Institute (ASI) on Techniques and Concepts of High Energy Physics was held at the Hotel on the Cay, in the scenic harbor of Christiansted, St. Croix, U. S. Virgin Islands. Christiansted was the site of the first ASI, and it was certainly a delight to return there again. As in the previous ASI's, the aim was to bring together a small group of promising young experimenters and several outstanding senior scholars in experimental and theoretical high energy physics in order to learn about the latest developments in the field and to strengthen contacts among scientists from different countries and different backgrounds. The institute was both a great scientific and a great social success; much of this was due to the beautiful setting and to the dedication of the Hotel management of Ray Boudreau and Hurchell Greenaway and their excellent staff. The primary support for the meeting was once again provided by the Scientific Affairs Division of NATO. The ASI was cosponsored by the U. S. Department of Energy, by Fermilab, by the National Science Found ation, and by the University of Rochester. A special contribution from the Oliver S. and Jennie R. Donaldson Charitable Trust provided an important degree of flexibility, as well as support for worthy students from developing nations. As in the case of the previous ASI's, the scientific program was designed for advanced graduate students and recent PhD recipients in experimental particle physics.


Surveys in Theoretical High Energy Physics - 2

Surveys in Theoretical High Energy Physics - 2

Author: Raghavan Rangarajan

Publisher: Springer

Published: 2016-11-13

Total Pages: 305

ISBN-13: 9811025916

DOWNLOAD EBOOK

The book presents pedagogical reviews of important topics on high energy physics to the students and researchers in particle physics. The book also discusses topics on the Quark–Gluon plasma, thermal field theory, perturbative quantum chromodynamics, anomalies and cosmology. Students of particle physics need to be well-equipped with basic understanding of many concepts underlying the standard models of particle physics and cosmology. This is particularly true today when experimental results from colliders, such as large hadron collider (LHC) and relativistic heavy ion collider (RHIC), as well as inferences from cosmological observations, are expected to further expand our understanding of particle physics at high energies. This volume is the second in the Surveys in Theoretical High Energy Physics Series (SThEP). Topics covered in this book are based on lectures delivered at the SERC Schools in Theoretical High Energy Physics at the Physical Research Laboratory, Ahmedabad, and the University of Hyderabad.


Current Perspectives in High Energy Physics

Current Perspectives in High Energy Physics

Author: Debashis Ghoshal

Publisher: Springer

Published: 2005-01-15

Total Pages: 503

ISBN-13: 9386279266

DOWNLOAD EBOOK

Current research in High Energy Physics focuses on a number of enigmatic issues that go beyond the very successful Standard Model of particle physics. Among these are the problem of neutrino mass, the (as yet) unobserved Higgs particle, the quark-gluon plasma, quantum aspects of gravity, and the so--called hierarchy problem. Satisfactory resolution of these important questions will take much research effort in both theory and experiment. The Science & Engineering Research Council, Department of Science & Technology has sponsored a series of SERC Schools in Theoretical High Energy Physics over the past several years, to provide instruction and training to graduate students working for research degrees. This book is an outcome of the schools held at the Saha Institute of Nuclear Physics, Kolkata in 2000, and at the Harish-Chandra Research Institute, Allahabad in 2001. Based on lectures by active researchers in the field---Rajiv Gavai, Debashis Ghoshal, Dileep Jatkar, Anjan Joshipura, Biswarup Mukhopadhyaya, Sreerup Raychaudhuri, Saurabh Rindani, Ashoke Sen and Sandip Trivedi---the nine chapters comprising the book deal with a number of topics that range from the fundamentals of the field, to problems and questions that are at the very forefront of current research. This volume will thus be useful to the advanced graduate student who has familiarity with quantum field theory, the Standard Model, and the general theory of relativity, and will also provide a useful reference for working scientists.


Modern Particle Physics

Modern Particle Physics

Author: Mark Thomson

Publisher:

Published: 2013

Total Pages: 825

ISBN-13: 1107289777

DOWNLOAD EBOOK

"Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book"--


From Special Relativity to Feynman Diagrams

From Special Relativity to Feynman Diagrams

Author: Riccardo D'Auria

Publisher: Springer

Published: 2015-10-06

Total Pages: 609

ISBN-13: 3319220144

DOWNLOAD EBOOK

This book, now in its second edition, provides an introductory course on theoretical particle physics with the aim of filling the gap that exists between basic courses of classical and quantum mechanics and advanced courses of (relativistic) quantum mechanics and field theory. After a concise but comprehensive introduction to special relativity, key aspects of relativistic dynamics are covered and some elementary concepts of general relativity introduced. Basics of the theory of groups and Lie algebras are explained, with discussion of the group of rotations and the Lorentz and Poincaré groups. In addition, a concise account of representation theory and of tensor calculus is provided. Quantization of the electromagnetic field in the radiation range is fully discussed. The essentials of the Lagrangian and Hamiltonian formalisms are reviewed, proceeding from systems with a finite number of degrees of freedom and extending the discussion to fields. The final four chapters are devoted to development of the quantum field theory, ultimately introducing the graphical description of interaction processes by means of Feynman diagrams. The book will be of value for students seeking to understand the main concepts that form the basis of contemporary theoretical particle physics and also for engineers and lecturers. An Appendix on some special relativity effects is added.