Although portfolio management didn't change much during the 40 years after the seminal works of Markowitz and Sharpe, the development of risk budgeting techniques marked an important milestone in the deepening of the relationship between risk and asset management. Risk parity then became a popular financial model of investment after the global fina
Risk budgeting models set risk diversification as objective in portfolio allocation and are mainly promoted from the asset management industry. Albina Unger examines the portfolios based on different risk measures in several aspects from the academic perspective (Utility, Performance, Risk, Different Market Phases, Robustness, and Factor Exposures) to investigate the use of these models for asset allocation. Beside the risk budgeting models, alternatives of risk-based investment styles are also presented and examined. The results show that equalizing the risk across the assets does not prevent losses, especially in crisis periods and the performance can mainly be explained by exposures to known asset pricing factors. Thus, the advantages of these approaches compared to known minimum risk portfolios are doubtful.
In spite of theoretical benefits, Markowitz mean-variance (MV) optimized portfolios often fail to meet practical investment goals of marketability, usability, and performance, prompting many investors to seek simpler alternatives. Financial experts Richard and Robert Michaud demonstrate that the limitations of MV optimization are not the result of conceptual flaws in Markowitz theory but unrealistic representation of investment information. What is missing is a realistic treatment of estimation error in the optimization and rebalancing process. The text provides a non-technical review of classical Markowitz optimization and traditional objections. The authors demonstrate that in practice the single most important limitation of MV optimization is oversensitivity to estimation error. Portfolio optimization requires a modern statistical perspective. Efficient Asset Management, Second Edition uses Monte Carlo resampling to address information uncertainty and define Resampled Efficiency (RE) technology. RE optimized portfolios represent a new definition of portfolio optimality that is more investment intuitive, robust, and provably investment effective. RE rebalancing provides the first rigorous portfolio trading, monitoring, and asset importance rules, avoiding widespread ad hoc methods in current practice. The Second Edition resolves several open issues and misunderstandings that have emerged since the original edition. The new edition includes new proofs of effectiveness, substantial revisions of statistical estimation, extensive discussion of long-short optimization, and new tools for dealing with estimation error in applications and enhancing computational efficiency. RE optimization is shown to be a Bayesian-based generalization and enhancement of Markowitz's solution. RE technology corrects many current practices that may adversely impact the investment value of trillions of dollars under current asset management. RE optimization technology may also be useful in other financial optimizations and more generally in multivariate estimation contexts of information uncertainty with Bayesian linear constraints. Michaud and Michaud's new book includes numerous additional proposals to enhance investment value including Stein and Bayesian methods for improved input estimation, the use of portfolio priors, and an economic perspective for asset-liability optimization. Applications include investment policy, asset allocation, and equity portfolio optimization. A simple global asset allocation problem illustrates portfolio optimization techniques. A final chapter includes practical advice for avoiding simple portfolio design errors. With its important implications for investment practice, Efficient Asset Management 's highly intuitive yet rigorous approach to defining optimal portfolios will appeal to investment management executives, consultants, brokers, and anyone seeking to stay abreast of current investment technology. Through practical examples and illustrations, Michaud and Michaud update the practice of optimization for modern investment management.
Probabilistic and percentile/quantile functions play an important role in several applications, such as finance (Value-at-Risk), nuclear safety, and the environment. Recently, significant advances have been made in sensitivity analysis and optimization of probabilistic functions, which is the basis for construction of new efficient approaches. This book presents the state of the art in the theory of optimization of probabilistic functions and several engineering and finance applications, including material flow systems, production planning, Value-at-Risk, asset and liability management, and optimal trading strategies for financial derivatives (options). Audience: The book is a valuable source of information for faculty, students, researchers, and practitioners in financial engineering, operation research, optimization, computer science, and related areas.
Eschewing a more theoretical approach, Portfolio Optimization shows how the mathematical tools of linear algebra and optimization can quickly and clearly formulate important ideas on the subject. This practical book extends the concepts of the Markowitz "budget constraint only" model to a linearly constrained model. Only requiring elementary linear algebra, the text begins with the necessary and sufficient conditions for optimal quadratic minimization that is subject to linear equality constraints. It then develops the key properties of the efficient frontier, extends the results to problems with a risk-free asset, and presents Sharpe ratios and implied risk-free rates. After focusing on quadratic programming, the author discusses a constrained portfolio optimization problem and uses an algorithm to determine the entire (constrained) efficient frontier, its corner portfolios, the piecewise linear expected returns, and the piecewise quadratic variances. The final chapter illustrates infinitely many implied risk returns for certain market portfolios. Drawing on the author’s experiences in the academic world and as a consultant to many financial institutions, this text provides a hands-on foundation in portfolio optimization. Although the author clearly describes how to implement each technique by hand, he includes several MATLAB® programs designed to implement the methods and offers these programs on the accompanying CD-ROM.
Dealing with all aspects of risk management that have undergone significant innovation in recent years, this book aims at being a reference work in its field. Different to other books on the topic, it addresses the challenges and opportunities facing the different risk management types in banks, insurance companies, and the corporate sector. Due to the rising volatility in the financial markets as well as political and operational risks affecting the business sector in general, capital adequacy rules are equally important for non-financial companies. For the banking sector, the book emphasizes the modifications implied by the Basel II proposal. The volume has been written for academics as well as practitioners, in particular finance specialists. It is unique in bringing together such a wide array of experts and correspondingly offers a complete coverage of recent developments in risk management.
Financial Risk Modelling and Portfolio Optimization with R, 2nd Edition Bernhard Pfaff, Invesco Global Asset Allocation, Germany A must have text for risk modelling and portfolio optimization using R. This book introduces the latest techniques advocated for measuring financial market risk and portfolio optimization, and provides a plethora of R code examples that enable the reader to replicate the results featured throughout the book. This edition has been extensively revised to include new topics on risk surfaces and probabilistic utility optimization as well as an extended introduction to R language. Financial Risk Modelling and Portfolio Optimization with R: Demonstrates techniques in modelling financial risks and applying portfolio optimization techniques as well as recent advances in the field. Introduces stylized facts, loss function and risk measures, conditional and unconditional modelling of risk; extreme value theory, generalized hyperbolic distribution, volatility modelling and concepts for capturing dependencies. Explores portfolio risk concepts and optimization with risk constraints. Is accompanied by a supporting website featuring examples and case studies in R. Includes updated list of R packages for enabling the reader to replicate the results in the book. Graduate and postgraduate students in finance, economics, risk management as well as practitioners in finance and portfolio optimization will find this book beneficial. It also serves well as an accompanying text in computer-lab classes and is therefore suitable for self-study.
This book presents solutions to the general problem of single period portfolio optimization. It introduces different linear models, arising from different performance measures, and the mixed integer linear models resulting from the introduction of real features. Other linear models, such as models for portfolio rebalancing and index tracking, are also covered. The book discusses computational issues and provides a theoretical framework, including the concepts of risk-averse preferences, stochastic dominance and coherent risk measures. The material is presented in a style that requires no background in finance or in portfolio optimization; some experience in linear and mixed integer models, however, is required. The book is thoroughly didactic, supplementing the concepts with comments and illustrative examples.