The Use of Dispersants in Marine Oil Spill Response

The Use of Dispersants in Marine Oil Spill Response

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-04-24

Total Pages: 341

ISBN-13: 0309478219

DOWNLOAD EBOOK

Whether the result of an oil well blowout, vessel collision or grounding, leaking pipeline, or other incident at sea, each marine oil spill will present unique circumstances and challenges. The oil type and properties, location, time of year, duration of spill, water depth, environmental conditions, affected biomes, potential human community impact, and available resources may vary significantly. Also, each spill may be governed by policy guidelines, such as those set forth in the National Response Plan, Regional Response Plans, or Area Contingency Plans. To respond effectively to the specific conditions presented during an oil spill, spill responders have used a variety of response optionsâ€"including mechanical recovery of oil using skimmers and booms, in situ burning of oil, monitored natural attenuation of oil, and dispersion of oil by chemical dispersants. Because each response method has advantages and disadvantages, it is important to understand specific scenarios where a net benefit may be achieved by using a particular tool or combination of tools. This report builds on two previous National Research Council reports on dispersant use to provide a current understanding of the state of science and to inform future marine oil spill response operations. The response to the 2010 Deepwater Horizon spill included an unprecedented use of dispersants via both surface application and subsea injection. The magnitude of the spill stimulated interest and funding for research on oil spill response, and dispersant use in particular. This study assesses the effects and efficacy of dispersants as an oil spill response tool and evaluates trade-offs associated with dispersant use.


Oil Spill Dispersants

Oil Spill Dispersants

Author: Committee on Understanding Oil Spill Dispersants: Efficacy and Effects

Publisher:

Published: 2005

Total Pages: 408

ISBN-13:

DOWNLOAD EBOOK

Approximately 3 million gallons of oil or refined petroleum products are spilled into U.S. waters every year. Oil dispersants (chemical agents such as surfactants, solvents, and other compounds) are used to reduce the effect of oil spills by changing the chemical and physical properties of the oil. By enhancing the amount of oil that physically mixes into the water, dispersants can reduce the potential that a surface slick will contaminate shoreline habitats. Although called for in the Oil Pollution Act of 1990 as a tool for minimizing the impact of oil spills, the use of chemical dispersants has long been controversial. This book reviews the adequacy of existing information and ongoing research regarding the effectiveness of dispersants as an oil spill response technique, as well as the effect of dispersed oil on marine and coastal ecosystems. Oil Spill Dispersants also includes recommended steps for policy makers faced with making hard choices regarding the use of dispersants as part of spill contingency planning efforts or during actual spills.


The Use of Dispersants in Marine Oil Spill Response

The Use of Dispersants in Marine Oil Spill Response

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-05-24

Total Pages: 341

ISBN-13: 0309478189

DOWNLOAD EBOOK

Whether the result of an oil well blowout, vessel collision or grounding, leaking pipeline, or other incident at sea, each marine oil spill will present unique circumstances and challenges. The oil type and properties, location, time of year, duration of spill, water depth, environmental conditions, affected biomes, potential human community impact, and available resources may vary significantly. Also, each spill may be governed by policy guidelines, such as those set forth in the National Response Plan, Regional Response Plans, or Area Contingency Plans. To respond effectively to the specific conditions presented during an oil spill, spill responders have used a variety of response optionsâ€"including mechanical recovery of oil using skimmers and booms, in situ burning of oil, monitored natural attenuation of oil, and dispersion of oil by chemical dispersants. Because each response method has advantages and disadvantages, it is important to understand specific scenarios where a net benefit may be achieved by using a particular tool or combination of tools. This report builds on two previous National Research Council reports on dispersant use to provide a current understanding of the state of science and to inform future marine oil spill response operations. The response to the 2010 Deepwater Horizon spill included an unprecedented use of dispersants via both surface application and subsea injection. The magnitude of the spill stimulated interest and funding for research on oil spill response, and dispersant use in particular. This study assesses the effects and efficacy of dispersants as an oil spill response tool and evaluates trade-offs associated with dispersant use.


Responding to Oil Spills in the U.S. Arctic Marine Environment

Responding to Oil Spills in the U.S. Arctic Marine Environment

Author: National Research Council

Publisher: National Academies Press

Published: 2014-08-01

Total Pages: 350

ISBN-13: 030929889X

DOWNLOAD EBOOK

U.S. Arctic waters north of the Bering Strait and west of the Canadian border encompass a vast area that is usually ice covered for much of the year, but is increasingly experiencing longer periods and larger areas of open water due to climate change. Sparsely inhabited with a wide variety of ecosystems found nowhere else, this region is vulnerable to damage from human activities. As oil and gas, shipping, and tourism activities increase, the possibilities of an oil spill also increase. How can we best prepare to respond to such an event in this challenging environment? Responding to Oil Spills in the U.S. Arctic Marine Environment reviews the current state of the science regarding oil spill response and environmental assessment in the Arctic region north of the Bering Strait, with emphasis on the potential impacts in U.S. waters. This report describes the unique ecosystems and environment of the Arctic and makes recommendations to provide an effective response effort in these challenging conditions. According to Responding to Oil Spills in the U.S. Arctic Marine Environment, a full range of proven oil spill response technologies is needed in order to minimize the impacts on people and sensitive ecosystems. This report identifies key oil spill research priorities, critical data and monitoring needs, mitigation strategies, and important operational and logistical issues. The Arctic acts as an integrating, regulating, and mediating component of the physical, atmospheric and cryospheric systems that govern life on Earth. Not only does the Arctic serve as regulator of many of the Earth's large-scale systems and processes, but it is also an area where choices made have substantial impact on life and choices everywhere on planet Earth. This report's recommendations will assist environmentalists, industry, state and local policymakers, and anyone interested in the future of this special region to preserve and protect it from damaging oil spills.


Using Oil Spill Dispersants on the Sea

Using Oil Spill Dispersants on the Sea

Author: National Research Council

Publisher: National Academies Press

Published: 1989-01-01

Total Pages: 352

ISBN-13: 0309090458

DOWNLOAD EBOOK

While major oil spills are rare, oil slicks can have disastrous environmental and economic consequences. This book summarizes research on the use of chemical dispersants: their effectiveness and limitations and the results of using them in different spill situations. Based on laboratory and field research as well as on actual case histories, this book contains a clear-cut set of recommendations for action, planning, and research. Of special interest is the chapter on the biological effects of oil itself and of oil treated with chemical dispersants.


Response to Marine Oil Pollution

Response to Marine Oil Pollution

Author: Douglas Cormack

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 408

ISBN-13: 9401593019

DOWNLOAD EBOOK

Response to Marine Oil Pollution - Review and Assessment is the essential source book, now updated, for all involved in marine oil pollution consequences and response. It covers policy, planning and operations, and provides technical assessment of the true nature of the problem, of the means to maximise the performance of current techniques and equipment, and of the bases for future improvements. This book provides a fundamental understanding of the oil properties and processes which determine the persistence and impacts of oils in the marine environment. It establishes parameters against which to evaluate performance of all current techniques and equipment, and the environmental impacts of their use. It identifies design parameters, and makes proposals for the creation and development of more effective equipment and techniques. The book also shows how a fresh approach to cargo transfer, and the scaling of spillage response provision to oil releases on immediate impact, will be more effective overall, and will ensure that approved waste handling and disposal facilities are not overwhelmed. The recent Sea Empress incident is reviewed to illustrate the points made and conclusions reached, and to emphasise the need for thorough salvage planning for all future incidents.


Oil in the Sea III

Oil in the Sea III

Author: National Research Council

Publisher: National Academies Press

Published: 2003-03-14

Total Pages: 278

ISBN-13: 0309084385

DOWNLOAD EBOOK

Since the early 1970s, experts have recognized that petroleum pollutants were being discharged in marine waters worldwide, from oil spills, vessel operations, and land-based sources. Public attention to oil spills has forced improvements. Still, a considerable amount of oil is discharged yearly into sensitive coastal environments. Oil in the Sea provides the best available estimate of oil pollutant discharge into marine waters, including an evaluation of the methods for assessing petroleum load and a discussion about the concerns these loads represent. Featuring close-up looks at the Exxon Valdez spill and other notable events, the book identifies important research questions and makes recommendations for better analysis ofâ€"and more effective measures againstâ€"pollutant discharge. The book discusses: Inputâ€"where the discharges come from, including the role of two-stroke engines used on recreational craft. Behavior or fateâ€"how oil is affected by processes such as evaporation as it moves through the marine environment. Effectsâ€"what we know about the effects of petroleum hydrocarbons on marine organisms and ecosystems. Providing a needed update on a problem of international importance, this book will be of interest to energy policy makers, industry officials and managers, engineers and researchers, and advocates for the marine environment.


Spills of Diluted Bitumen from Pipelines

Spills of Diluted Bitumen from Pipelines

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-03-22

Total Pages: 167

ISBN-13: 0309380103

DOWNLOAD EBOOK

Diluted bitumen has been transported by pipeline in the United States for more than 40 years, with the amount increasing recently as a result of improved extraction technologies and resulting increases in production and exportation of Canadian diluted bitumen. The increased importation of Canadian diluted bitumen to the United States has strained the existing pipeline capacity and contributed to the expansion of pipeline mileage over the past 5 years. Although rising North American crude oil production has resulted in greater transport of crude oil by rail or tanker, oil pipelines continue to deliver the vast majority of crude oil supplies to U.S. refineries. Spills of Diluted Bitumen from Pipelines examines the current state of knowledge and identifies the relevant properties and characteristics of the transport, fate, and effects of diluted bitumen and commonly transported crude oils when spilled in the environment. This report assesses whether the differences between properties of diluted bitumen and those of other commonly transported crude oils warrant modifications to the regulations governing spill response plans and cleanup. Given the nature of pipeline operations, response planning, and the oil industry, the recommendations outlined in this study are broadly applicable to other modes of transportation as well.


Scenarios and Responses to Future Deep Oil Spills

Scenarios and Responses to Future Deep Oil Spills

Author: Steven A. Murawski

Publisher: Springer

Published: 2019-07-04

Total Pages: 549

ISBN-13: 3030129632

DOWNLOAD EBOOK

It has often been said that generals prepare for the next war by re-fighting the last. The Deepwater Horizon (DWH) oil spill was unlike any previous – an underwater well blowout 1,500 meters deep. Much has been learned in the wake of DWH and these lessons should in turn be applied to both similar oil spill scenarios and those arising from “frontier” explorations by the marine oil industry. The next deep oil well blowout may be at 3,000 meters or even deeper. This volume summarizes regional (Gulf of Mexico) and global megatrends in marine oil exploration and production. Research in a number of key areas including the behavior of oil and gas under extreme pressure, impacts on biological resources of the deep sea, and the fate of oil and gas released in spills is synthesized. A number of deep oil spills are simulated with detailed computer models, and the likely effects of the spills and potential mitigation measures used to combat them are compared. Recommended changes in policies governing marine oil exploration and development are proposed, as well as additional research to close critical and emerging knowledge gaps. This volume synthesizes state-of-the-art research in deep oil spill behavior and response. It is thus relevant for government and industry oil spill responders, policy formulators and implementers, and academics and students desiring an in-depth and balanced overview of key issues and uncertainties surrounding the quest for deep oil and potential impacts on the environment.