A Transition to Advanced Mathematics

A Transition to Advanced Mathematics

Author: Douglas Smith

Publisher: Cengage Learning

Published: 2010-06-01

Total Pages: 416

ISBN-13: 9780495562023

DOWNLOAD EBOOK

A TRANSITION TO ADVANCED MATHEMATICS helps students make the transition from calculus to more proofs-oriented mathematical study. The most successful text of its kind, the 7th edition continues to provide a firm foundation in major concepts needed for continued study and guides students to think and express themselves mathematically to analyze a situation, extract pertinent facts, and draw appropriate conclusions. The authors place continuous emphasis throughout on improving students' ability to read and write proofs, and on developing their critical awareness for spotting common errors in proofs. Concepts are clearly explained and supported with detailed examples, while abundant and diverse exercises provide thorough practice on both routine and more challenging problems. Students will come away with a solid intuition for the types of mathematical reasoning they'll need to apply in later courses and a better understanding of how mathematicians of all kinds approach and solve problems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.


Making Sense of Algebra

Making Sense of Algebra

Author: Ernest Paul Goldenberg

Publisher: Heinemann Educational Books

Published: 2015

Total Pages: 0

ISBN-13: 9780325053011

DOWNLOAD EBOOK

"This book has much to offer teachers of middle and high school algebra who wish to implement the Common Core Standards for all of their students." -Hyman Bass, Samuel Eilenberg Distinguished University Professor of Mathematics & Mathematics Education, University of Michigan "One of the joys of Making Sense of Algebra is how clearly and practically the 'how' question is answered." -Steven Leinwand, American Institutes for Research, author of Accessible Mathematics "Paul Goldenberg and his colleagues have done a fantastic job of connecting mathematical ideas to teaching those ideas." -David Wees, New Visions for Public Schools, New York City Every teacher wants to help students make sense of mathematics; but what if you could guide your students to expect mathematics to make sense? What if you could help them develop a deep understanding of the reasons behind its facts and methods? In Making Sense of Algebra, the common misconception that algebra is simply a collection of rules to know and follow is debunked by delving into how we think about mathematics. This "habits of mind" approach is concerned not just with the results of mathematical thinking, but with how mathematically proficient students do that thinking. Making Sense of Algebra addresses developing this type of thinking in your students through: using well-chosen puzzles and investigations to promote perseverance and a willingness to explore seeking structure and looking for patterns that mathematicians anticipate finding-and using this to draw conclusions cultivating an approach to authentic problems that are rarely as tidy as what is found in textbooks allowing students to generate, validate, and critique their own and others' ideas without relying on an outside authority. Through teaching tips, classroom vignettes, and detailed examples, Making Sense of Algebra shows how to focus your instruction on building these key habits of mind, while inviting students to experience the clarity and meaning of mathematics-perhaps for the first time. Discover more math resources at Heinemann.com/Math


A Transition to Advanced Mathematics

A Transition to Advanced Mathematics

Author: William Johnston

Publisher: Oxford University Press

Published: 2009-07-27

Total Pages: 766

ISBN-13: 0199718660

DOWNLOAD EBOOK

A Transition to Advanced Mathematics: A Survey Course promotes the goals of a "bridge'' course in mathematics, helping to lead students from courses in the calculus sequence (and other courses where they solve problems that involve mathematical calculations) to theoretical upper-level mathematics courses (where they will have to prove theorems and grapple with mathematical abstractions). The text simultaneously promotes the goals of a ``survey'' course, describing the intriguing questions and insights fundamental to many diverse areas of mathematics, including Logic, Abstract Algebra, Number Theory, Real Analysis, Statistics, Graph Theory, and Complex Analysis. The main objective is "to bring about a deep change in the mathematical character of students -- how they think and their fundamental perspectives on the world of mathematics." This text promotes three major mathematical traits in a meaningful, transformative way: to develop an ability to communicate with precise language, to use mathematically sound reasoning, and to ask probing questions about mathematics. In short, we hope that working through A Transition to Advanced Mathematics encourages students to become mathematicians in the fullest sense of the word. A Transition to Advanced Mathematics has a number of distinctive features that enable this transformational experience. Embedded Questions and Reading Questions illustrate and explain fundamental concepts, allowing students to test their understanding of ideas independent of the exercise sets. The text has extensive, diverse Exercises Sets; with an average of 70 exercises at the end of section, as well as almost 3,000 distinct exercises. In addition, every chapter includes a section that explores an application of the theoretical ideas being studied. We have also interwoven embedded reflections on the history, culture, and philosophy of mathematics throughout the text.


Discovering Group Theory

Discovering Group Theory

Author: Tony Barnard

Publisher: CRC Press

Published: 2016-12-19

Total Pages: 286

ISBN-13: 1315405768

DOWNLOAD EBOOK

Discovering Group Theory: A Transition to Advanced Mathematics presents the usual material that is found in a first course on groups and then does a bit more. The book is intended for students who find the kind of reasoning in abstract mathematics courses unfamiliar and need extra support in this transition to advanced mathematics. The book gives a number of examples of groups and subgroups, including permutation groups, dihedral groups, and groups of integer residue classes. The book goes on to study cosets and finishes with the first isomorphism theorem. Very little is assumed as background knowledge on the part of the reader. Some facility in algebraic manipulation is required, and a working knowledge of some of the properties of integers, such as knowing how to factorize integers into prime factors. The book aims to help students with the transition from concrete to abstract mathematical thinking.


Connecting Arithmetic to Algebra

Connecting Arithmetic to Algebra

Author: Susan Jo Russell

Publisher: Heinemann Educational Books

Published: 2011

Total Pages: 0

ISBN-13: 9780325041919

DOWNLOAD EBOOK

"To truly engage in mathematics is to become curious and intrigued about regularities and patterns, then describe and explain them. A focus on the behavior of the operations allows students starting in the familiar territory of number and computation to progress to true engagement in the discipline of mathematics." -Susan Jo Russell, Deborah Schifter, and Virginia Bastable Algebra readiness: it's a topic of concern that seems to pervade every school district. How can we better prepare elementary students for algebra? More importantly, how can we help all children, not just those who excel in math, become ready for later instruction? The answer lies not in additional content, but in developing a way of thinking about the mathematics that underlies both arithmetic and algebra. Connecting Arithmetic to Algebra invites readers to learn about a crucial component of algebraic thinking: investigating the behavior of the operations. Nationally-known math educators Susan Jo Russell, Deborah Schifter, and Virginia Bastable and a group of collaborating teachers describe how elementary teachers can shape their instruction so that students learn to: *notice and describe consistencies across problems *articulate generalizations about the behavior of the operations *develop mathematical arguments based on representations to explain why such generalizations are or are not true. Through such work, students become familiar with properties and general rules that underlie computational strategies-including those that form the basis of strategies used in algebra-strengthening their understanding of grade-level content and at the same time preparing them for future studies. Each chapter is illustrated by lively episodes drawn from the classrooms of collaborating teachers in a wide range of settings. These provide examples of posing problems, engaging students in productive discussion, using representations to develop mathematical arguments, and supporting both students with a wide range of learning profiles. Staff Developers: Available online, the Course Facilitator's Guide provides math leaders with tools and resources for implementing a Connecting Arithmetic to Algebra workshop or preservice course. For information on the PD course offered through Mount Holyoke College, download the flyer.


Transitions in Mathematics Education

Transitions in Mathematics Education

Author: Ghislaine Gueudet

Publisher: Springer

Published: 2016-07-07

Total Pages: 44

ISBN-13: 3319316222

DOWNLOAD EBOOK

This book examines the kinds of transitions that have been studied in mathematics education research. It defines transition as a process of change, and describes learning in an educational context as a transition process. The book focuses on research in the area of mathematics education, and starts out with a literature review, describing the epistemological, cognitive, institutional and sociocultural perspectives on transition. It then looks at the research questions posed in the studies and their link with transition, and examines the theoretical approaches and methods used. It explores whether the research conducted has led to the identification of continuous processes, successive steps, or discontinuities. It answers the question of whether there are difficulties attached to the discontinuities identified, and if so, whether the research proposes means to reduce the gap – to create a transition. The book concludes with directions for future research on transitions in mathematics education.


Math on the Move

Math on the Move

Author: Malke Rosenfeld

Publisher: Heinemann Educational Books

Published: 2016-10-18

Total Pages: 0

ISBN-13: 9780325074702

DOWNLOAD EBOOK

"Kids love to move. But how do we harness all that kinetic energy effectively for math learning? In Math on the Move, Malke Rosenfeld shows how pairing math concepts and whole body movement creates opportunities for students to make sense of math in entirely new ways. Malke shares her experience creating dynamic learning environments by: exploring the use of the body as a thinking tool, highlighting mathematical ideas that are usefully explored with a moving body, providing a range of entry points for learning to facilitate a moving math classroom. ..."--Publisher description.


Advanced Mathematics

Advanced Mathematics

Author: Stanley J. Farlow

Publisher: John Wiley & Sons

Published: 2019-10-02

Total Pages: 573

ISBN-13: 1119563534

DOWNLOAD EBOOK

Provides a smooth and pleasant transition from first-year calculus to upper-level mathematics courses in real analysis, abstract algebra and number theory Most universities require students majoring in mathematics to take a “transition to higher math” course that introduces mathematical proofs and more rigorous thinking. Such courses help students be prepared for higher-level mathematics course from their onset. Advanced Mathematics: A Transitional Reference provides a “crash course” in beginning pure mathematics, offering instruction on a blendof inductive and deductive reasoning. By avoiding outdated methods and countless pages of theorems and proofs, this innovative textbook prompts students to think about the ideas presented in an enjoyable, constructive setting. Clear and concise chapters cover all the essential topics students need to transition from the "rote-orientated" courses of calculus to the more rigorous "proof-orientated” advanced mathematics courses. Topics include sentential and predicate calculus, mathematical induction, sets and counting, complex numbers, point-set topology, and symmetries, abstract groups, rings, and fields. Each section contains numerous problems for students of various interests and abilities. Ideally suited for a one-semester course, this book: Introduces students to mathematical proofs and rigorous thinking Provides thoroughly class-tested material from the authors own course in transitioning to higher math Strengthens the mathematical thought process of the reader Includes informative sidebars, historical notes, and plentiful graphics Offers a companion website to access a supplemental solutions manual for instructors Advanced Mathematics: A Transitional Reference is a valuable guide for undergraduate students who have taken courses in calculus, differential equations, or linear algebra, but may not be prepared for the more advanced courses of real analysis, abstract algebra, and number theory that await them. This text is also useful for scientists, engineers, and others seeking to refresh their skills in advanced math.


Transition to Higher Mathematics

Transition to Higher Mathematics

Author: Bob A. Dumas

Publisher: McGraw-Hill Education

Published: 2007

Total Pages: 0

ISBN-13: 9780071106474

DOWNLOAD EBOOK

This book is written for students who have taken calculus and want to learn what "real mathematics" is.