Covering all aspects of gambling, The Theory of Gambling and Statistical Logic is mathematically sophisticated, but can be read for what it says about the games and strategies, skipping the technicalities. The material is fascinating and detailed, and the analysis is masterful.
Early in his rise to enlightenment, man invented a concept that has since been variously viewed as a vice, a crime, a business, a pleasure, a type of magic, a disease, a folly, a weakness, a form of sexual substitution, an expression of the human instinct. He invented gambling. Recent advances in the field, particularly Parrondo's paradox, have triggered a surge of interest in the statistical and mathematical theory behind gambling. This interest was acknowledge in the motion picture, "21," inspired by the true story of the MIT students who mastered the art of card counting to reap millions from the Vegas casinos. Richard Epstein's classic book on gambling and its mathematical analysis covers the full range of games from penny matching to blackjack, from Tic-Tac-Toe to the stock market (including Edward Thorp's warrant-hedging analysis). He even considers whether statistical inference can shed light on the study of paranormal phenomena. Epstein is witty and insightful, a pleasure to dip into and read and rewarding to study. The book is written at a fairly sophisticated mathematical level; this is not "Gambling for Dummies" or "How To Beat The Odds Without Really Trying." A background in upper-level undergraduate mathematics is helpful for understanding this work. - Comprehensive and exciting analysis of all major casino games and variants - Covers a wide range of interesting topics not covered in other books on the subject - Depth and breadth of its material is unique compared to other books of this nature Richard Epstein's website: www.gamblingtheory.net
Early in his rise to enlightenment, man invented a concept that has since been variously viewed as a vice, a crime, a business, a pleasure, a type of magic, a disease, a folly, a weakness, a form of sexual substitution, an expression of the human instinct. He invented gambling. Recent advances in the field, particularly Parrondo's paradox, have triggered a surge of interest in the statistical and mathematical theory behind gambling. This interest was acknowledge in the motion picture, "21," inspired by the true story of the MIT students who mastered the art of card counting to reap millions from the Vegas casinos. Richard Epstein's classic book on gambling and its mathematical analysis covers the full range of games from penny matching to blackjack, from Tic-Tac-Toe to the stock market (including Edward Thorp's warrant-hedging analysis). He even considers whether statistical inference can shed light on the study of paranormal phenomena. Epstein is witty and insightful, a pleasure to dip into and read and rewarding to study. The book is written at a fairly sophisticated mathematical level; this is not "Gambling for Dummies" or "How To Beat The Odds Without Really Trying." A background in upper-level undergraduate mathematics is helpful for understanding this work. - Comprehensive and exciting analysis of all major casino games and variants - Covers a wide range of interesting topics not covered in other books on the subject - Depth and breadth of its material is unique compared to other books of this nature - Richard Epstein's website: www.gamblingtheory.net
[Man] invented a concept that has since been variously viewed as a vice, a crime, a business, a pleasure, a type of magic, a disease, a folly, a weakness, a form of sexual substitution, an expression of the human instinct. He invented gambling.Richard Epstein's classic book on gambling and its mathematical analysis covers the full range of games from penny matching, to blackjack and other casino games, to the stock market (including Black-Scholes analysis). He even considers what light statistical inference can shed on the study of paranormal phenomena. Epstein is witty and insightful, a pleasure to dip into and read and rewarding to study.
Many experiments have shown the human brain generally has very serious problems dealing with probability and chance. A greater understanding of probability can help develop the intuition necessary to approach risk with the ability to make more informed (and better) decisions. The first four chapters offer the standard content for an introductory probability course, albeit presented in a much different way and order. The chapters afterward include some discussion of different games, different "ideas" that relate to the law of large numbers, and many more mathematical topics not typically seen in such a book. The use of games is meant to make the book (and course) feel like fun! Since many of the early games discussed are casino games, the study of those games, along with an understanding of the material in later chapters, should remind you that gambling is a bad idea; you should think of placing bets in a casino as paying for entertainment. Winning can, obviously, be a fun reward, but should not ever be expected. Changes for the Second Edition: New chapter on Game Theory New chapter on Sports Mathematics The chapter on Blackjack, which was Chapter 4 in the first edition, appears later in the book. Reorganization has been done to improve the flow of topics and learning. New sections on Arkham Horror, Uno, and Scrabble have been added. Even more exercises were added! The goal for this textbook is to complement the inquiry-based learning movement. In my mind, concepts and ideas will stick with the reader more when they are motivated in an interesting way. Here, we use questions about various games (not just casino games) to motivate the mathematics, and I would say that the writing emphasizes a "just-in-time" mathematics approach. Topics are presented mathematically as questions about the games themselves are posed. Table of Contents Preface 1. Mathematics and Probability 2. Roulette and Craps: Expected Value 3. Counting: Poker Hands 4. More Dice: Counting and Combinations, and Statistics 5. Game Theory: Poker Bluffing and Other Games 6. Probability/Stochastic Matrices: Board Game Movement 7. Sports Mathematics: Probability Meets Athletics 8. Blackjack: Previous Methods Revisited 9. A Mix of Other Games 10. Betting Systems: Can You Beat the System? 11. Potpourri: Assorted Adventures in Probability Appendices Tables Answers and Selected Solutions Bibliography Biography Dr. David G. Taylor is a professor of mathematics and an associate dean for academic affairs at Roanoke College in southwest Virginia. He attended Lebanon Valley College for his B.S. in computer science and mathematics and went to the University of Virginia for his Ph.D. While his graduate school focus was on studying infinite dimensional Lie algebras, he started studying the mathematics of various games in order to have a more undergraduate-friendly research agenda. Work done with two Roanoke College students, Heather Cook and Jonathan Marino, appears in this book! Currently he owns over 100 different board games and enjoys using probability in his decision-making while playing most of those games. In his spare time, he enjoys reading, cooking, coding, playing his board games, and spending time with his six-year-old dog Lilly.
Praise for the First Edition "Luck, Logic, and White Lies teaches readers of all backgrounds about the insight mathematical knowledge can bring and is highly recommended reading among avid game players, both to better understand the game itself and to improve one’s skills." – Midwest Book Review "The best book I've found for someone new to game math is Luck, Logic and White Lies by Jörg Bewersdorff. It introduces the reader to a vast mathematical literature, and does so in an enormously clear manner. . ." – Alfred Wallace, Musings, Ramblings, and Things Left Unsaid "The aim is to introduce the mathematics that will allow analysis of the problem or game. This is done in gentle stages, from chapter to chapter, so as to reach as broad an audience as possible . . . Anyone who likes games and has a taste for analytical thinking will enjoy this book." – Peter Fillmore, CMS Notes Luck, Logic, and White Lies: The Mathematics of Games, Second Edition considers a specific problem—generally a game or game fragment and introduces the related mathematical methods. It contains a section on the historical development of the theories of games of chance, and combinatorial and strategic games. This new edition features new and much refreshed chapters, including an all-new Part IV on the problem of how to measure skill in games. Readers are also introduced to new references and techniques developed since the previous edition. Features Provides a uniquely historical perspective on the mathematical underpinnings of a comprehensive list of games Suitable for a broad audience of differing mathematical levels. Anyone with a passion for games, game theory, and mathematics will enjoy this book, whether they be students, academics, or game enthusiasts Covers a wide selection of topics at a level that can be appreciated on a historical, recreational, and mathematical level. Jörg Bewersdorff (1958) studied mathematics from 1975 to 1982 at the University of Bonn and earned his PhD in 1985. In the same year, he started his career as game developer and mathematician. He served as the general manager of the subsidiaries of Gauselmann AG for more than two decades where he developed electronic gaming machines, automatic payment machines, and coin-operated Internet terminals. Dr. Bewersdorff has authored several books on Galois theory (translated in English and Korean), mathematical statistics, and object-oriented programming with JavaScript.
Absolutely must reading for all serious gamblers. Most people who gamble are basically attracted by the action and the excitement that this form of entertainment offers. But a small number of people are quite successful at it. How is this so? What helps these few to make decisions that devastate their opponents? And what do you need to do to become successful at this extremely challenging occupation? This text attempts to answer these questions. You will be introduced to the dynamic concept of non-self-weighting strategies and shown how these strategies apply not only at the "very exciting gaming tables" but in real life as well. In addition, risk and fluctuations are discussed in terms of the standard deviation and their relationship to each other and to your bankroll. Some of the other topics addressed are bankroll requirements, win-rate accuracy, free bets, which blackjack count is best, lottery fallacies, dangerous ideas, poker tournament strategies (including when it is correct to rebuy), settling up in tournaments, pai gow poker, super pan nine, the world's greatest gamblers, and building pyramids.
Everyone knows it is easy to lie with statistics. It is important then to be able to tell a statistical lie from a valid statistical inference. It is a relatively widely accepted commonplace that our scientific knowledge is not certain and incorrigible, but merely probable, subject to refinement, modifi cation, and even overthrow. The rankest beginner at a gambling table understands that his decisions must be based on mathematical ex pectations - that is, on utilities weighted by probabilities. It is widely held that the same principles apply almost all the time in the game of life. If we turn to philosophers, or to mathematical statisticians, or to probability theorists for criteria of validity in statistical inference, for the general principles that distinguish well grounded from ill grounded generalizations and laws, or for the interpretation of that probability we must, like the gambler, take as our guide in life, we find disagreement, confusion, and frustration. We might be prepared to find disagreements on a philosophical and theoretical level (although we do not find them in the case of deductive logic) but we do not expect, and we may be surprised to find, that these theoretical disagreements lead to differences in the conclusions that are regarded as 'acceptable' in the practice of science and public affairs, and in the conduct of business.
The country's leading libertarian scholar sets forth the essential principles for a legal system that best balances individual liberty versus the common good.