This balanced introduction covers all fundamentals, from the real number system and point sets to set theory and metric spaces. Useful references to the literature conclude each chapter. 1956 edition.
This is an English translation of Bourbaki’s Fonctions d'une Variable Réelle. Coverage includes: functions allowed to take values in topological vector spaces, asymptotic expansions are treated on a filtered set equipped with a comparison scale, theorems on the dependence on parameters of differential equations are directly applicable to the study of flows of vector fields on differential manifolds, etc.
This text is for a beginning graduate course in real variables and functional analysis. It assumes that the student has seen the basics of real variable theory and point set topology. Contents: 1) The topology of metric spaces. 2) Hilbert Spaces and Compact operators. 3) The Fourier Transform. 4) Measure theory. 5) The Lebesgue integral. 6) The Daniell integral. 7) Wiener measure, Brownian motion and white noise. 8) Haar measure. 9) Banach algebras and the spectral theorem. 10) The spectral theorem. 11) Stone's theorem. 12) More about the spectral theorem. 13) Scattering theory.
This book begins with the basics of the geometry and topology of Euclidean space and continues with the main topics in the theory of functions of several real variables including limits, continuity, differentiation and integration. All topics and in particular, differentiation and integration, are treated in depth and with mathematical rigor. The classical theorems of differentiation and integration such as the Inverse and Implicit Function theorems, Lagrange's multiplier rule, Fubini's theorem, the change of variables formula, Green's, Stokes' and Gauss' theorems are proved in detail and many of them with novel proofs. The authors develop the theory in a logical sequence building one result upon the other, enriching the development with numerous explanatory remarks and historical footnotes. A number of well chosen illustrative examples and counter-examples clarify matters and teach the reader how to apply these results and solve problems in mathematics, the other sciences and economics.Each of the chapters concludes with groups of exercises and problems, many of them with detailed solutions while others with hints or final answers. More advanced topics, such as Morse's lemma, Sard's theorem , the Weierstrass approximation theorem, the Fourier transform, Vector fields on spheres, Brouwer's fixed point theorem, Whitney's embedding theorem, Picard's theorem, and Hermite polynomials are discussed in stared sections.
This systematic exposition outlines the fundamentals of the theory of single sheeted domains of holomorphy. It further illustrates applications to quantum field theory, the theory of functions, and differential equations with constant coefficients. Students of quantum field theory will find this text of particular value. The text begins with an introduction that defines the basic concepts and elementary propositions, along with the more salient facts from the theory of functions of real variables and the theory of generalized functions. Subsequent chapters address the theory of plurisubharmonic functions and pseudoconvex domains, along with characteristics of domains of holomorphy. These explorations are further examined in terms of four types of domains: multiple-circular, tubular, semitubular, and Hartogs' domains. Surveys of integral representations focus on the Martinelli-Bochner, Bergman-Weil, and Bochner representations. The final chapter is devoted to applications, particularly those involved in field theory. It employs the theory of generalized functions, along with the theory of functions of several complex variables.
This undergraduate textbook is based on lectures given by the author on the differential and integral calculus of functions of several real variables. The book has a modern approach and includes topics such as: •The p-norms on vector space and their equivalence •The Weierstrass and Stone-Weierstrass approximation theorems •The differential as a linear functional; Jacobians, Hessians, and Taylor's theorem in several variables •The Implicit Function Theorem for a system of equations, proved via Banach’s Fixed Point Theorem •Applications to Ordinary Differential Equations •Line integrals and an introduction to surface integrals This book features numerous examples, detailed proofs, as well as exercises at the end of sections. Many of the exercises have detailed solutions, making the book suitable for self-study. Several Real Variables will be useful for undergraduate students in mathematics who have completed first courses in linear algebra and analysis of one real variable.
Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.